Computer System

The systematic use of computer hardware, software and firmware is known as a computer system. This note contains a brief description on computer system operates.

Summary

The systematic use of computer hardware, software and firmware is known as a computer system. This note contains a brief description on computer system operates.

Things to Remember

  • The systematic use of computer hardware, software, firmware and humane ware is known as a computer system.
  • Input unit of a computer are used for receiving data and instructions and communications.
  • CPU consists of three parts: Memory Unit, Control Unit, and ALU (Arithmetic- Logic Unit).
  • Output unit is the unit through which all the results are given out by output devices.

MCQs

No MCQs found.

Subjective Questions

Q1:

Prove that:

sin 50° - sin 70° + sin 10° = 0


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin 50&deg; - sin 70&deg; + sin 10&deg;</p> <p>= 2 cos(\(\frac {50&deg; + 70&deg;}2\)) sin (\(\frac {50&deg; - 70&deg;}2\)) + sin 10&deg;</p> <p>= 2 cos(\(\frac {120&deg;}2\)) sin(\(\frac {-20&deg;}2\)) + sin 10&deg;</p> <p>= - 2 cos 60&deg; sin 10&deg; + sin 10&deg;</p> <p>= - 2&times; \(\frac 12\) sin 10&deg; + sin 10&deg;</p> <p>= - sin 10&deg; + sin 10&deg;</p> <p>= 0</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q2:

Express sin 36° sin 24° as difference.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>sin 36&deg; sin 24&deg;</p> <p>= \(\frac 12\) [2 sin 36&deg; sin 24&deg;]</p> <p>= \(\frac 12\) [cos (36&deg; - 24&deg;) - cos(36&deg; + 24&deg;)]</p> <p>= \(\frac 12\) [cos 12&deg; - cos 60&deg;] <sub>Ans</sub></p>

Q3:

Express sin 50° cos 32° as sum.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>sin 50&deg; cos 32&deg;</p> <p>= \(\frac 12\) (2 sin 50&deg; cos 32&deg;)</p> <p>=\(\frac 12\) [sin (50&deg; + 32&deg;) + sin (50&deg; - 32&deg;)]</p> <p>= \(\frac 12\)[sin 82&deg; + sin 18&deg;] <sub>Ans</sub></p>

Q4:

Prove that:

\(\frac {cosB - cosA}{cosA + cosB}\) = tan\(\frac {A + B}{2}\) tan\(\frac {A - B}2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cosB - cosA}{cosA + cosB}\)</p> <p>= \(\frac {2 sin(\frac {B + A}2) sin(\frac {A - B}2)}{2 cos(\frac {A + B}2) cos(\frac {A - B}2)}\)</p> <p>= tan\(\frac {A + B}{2}\) tan\(\frac {A - B}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q5:

Prove that:

\(\frac {sinA + sinB}{cosA + cosB}\) = tan(\(\frac {A + B}2\))


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sinA + sinB}{cosA + cosB}\)</p> <p>= \(\frac {2 sin(\frac {A + B}2) cos(\frac {A - B}2)}{2 cos(\frac {A + B}2) cos(\frac {A - B}2)}\)</p> <p>= \(\frac {sin(\frac {A + B}2)}{cos(\frac {A + B}2)}\)</p> <p>= tan(\(\frac {A + B}2\))</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q6:

Prove that:

\(\frac {sin 5A - sin 3A}{cos 5A + cos 3A}\) = tanA


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 5A - sin 3A}{cos 5A + cos 3A}\)</p> <p>=\(\frac {2 cos(\frac {5A + 3A}2) sin(\frac {5A - 3A}2)}{2 cos(\frac {5A + 3A}2) cos(\frac {5A - 3A}2)}\)</p> <p>= \(\frac {cos4A sinA}{cos 4A cosA}\)</p> <p>= \(\frac {sinA}{cosA}\)</p> <p>= tanA</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q7:

Evaluate without using calculator or table.

sin 70° - cos 80° + cos 140°


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>sin 70&deg; - cos 80&deg; + cos 140&deg;</p> <p>= sin 70&deg; + cos 140&deg; - cos 80&deg;</p> <p>= sin 70&deg; - 2 sin\(\frac {140&deg; + 80&deg;}2\) sin\(\frac {140&deg; - 80&deg;}2\)</p> <p>= sin 70&deg; - 2 sin\(\frac {220&deg;}2\) sin\(\frac {60&deg;}2\)</p> <p>= sin 70&deg; - 2 sin 110&deg; sin 30&deg;</p> <p>= sin 70&deg; - 2 sin(180&deg; - 70&deg;)&times; \(\frac 12\)</p> <p>= sin 70&deg; - sin 70&deg;</p> <p>= 0 <sub>Ans</sub></p>

Q8:

Without using calculator or table, prove that:

cos 70° + cos 40° = 2 cos 55° cos 15°


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos 70&deg; + cos 40&deg;</p> <p>= 2 cos\(\frac {70&deg; + 40&deg;}2\) cos\(\frac {70&deg; - 40&deg;}2\)</p> <p>= 2 cos\(\frac {110&deg;}2\) cos\(\frac {30&deg;}2\)</p> <p>= 2 cos 55&deg; cos 15&deg;</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q9:

Without using calculator or table, find the value of cos 15° - cos 75°.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos 15&deg; - cos 75&deg;</p> <p>= - 2 sin\(\frac {15 + 75}2\) sin\(\frac {15 - 75}2\)</p> <p>= - 2 sin\(\frac {90&deg;}2\) sin\(\frac {(-60&deg;)}2\)</p> <p>= - 2 sin 45&deg;&times; - sin 30&deg;</p> <p>= 2&times; \(\frac 1{\sqrt 2}\)&times; \(\frac 12\)</p> <p>= \(\frac 1{\sqrt 2}\) <sub>Ans</sub></p>

Q10:

Express as a product sin 50° + sin 20°.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin 50&deg; + sin 20&deg;</p> <p>= 2 sin\(\frac {50&deg; + 20&deg;}2\) cos\(\frac {50&deg; - 20&deg;}2\)</p> <p>= 2 sin\(\frac {70&deg;}2\) cos\(\frac {30&deg;}2\)</p> <p>= 2 sin 35&deg; cos 15&deg; <sub>Ans</sub></p>

Q11:

Express as a sum or difference: sin 25° cos 75°.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin 25&deg; cos 75&deg;</p> <p>= \(\frac 22\) sin 25&deg; cos 75&deg;</p> <p>= \(\frac 12\) (2 sin 25&deg; cos 75&deg;)</p> <p>= \(\frac 12\) [sin (25&deg; + 75&deg;) + sin (25&deg; - 75&deg;)]</p> <p>= \(\frac 12\) [sin 100&deg; + sin (-50&deg;)]</p> <p>= \(\frac 12\) [sin 100&deg; - sin 50&deg;] <sub>Ans</sub></p>

Q12:

Prove that:

sin 5\(\theta\) + sin 3\(\theta\) = 2 sin 4\(\theta\) cos\(\theta\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin 5\(\theta\) + sin 3\(\theta\)</p> <p>= 2 sin\(\frac {5\theta + 3\theta}2\) cos\(\frac {5\theta - 3\theta}2\)</p> <p>= 2 sin\(\frac {8\theta}2\) cos\(\frac {2\theta}2\)</p> <p>= 2 sin 4\(\theta\) cos\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q13:

Prove that:

\(\frac {sinA + sinB}{sinA - sinB}\) = tan\(\frac {A + B}2\) cot\(\frac {A - B}2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sinA + sinB}{sinA - sinB}\)</p> <p>= \(\frac {2 sin(\frac {A + B}2) cos(\frac {A - B}2)}{2 cos(\frac {A + B}2) sin(\frac {A - B}2)}\)</p> <p>= tan\(\frac {A + B}2\) cot\(\frac {A - B}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q14:

Prove that:

\(\frac {sin 3A - sinA}{cosA - cos 3A}\) = cot 2A


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 3A - sinA}{cosA - cos 3A}\)</p> <p>= \(\frac {2 cos\frac {3A + A}2 . sin\frac {3A - A}2}{2 sin\frac {3A + A}2 . sin\frac {3A - A}2}\)</p> <p>= \(\frac {cos\frac {4A}2 . sin\frac {2A}2}{sin\frac {4A}2 . sin\frac {2A}2}\)</p> <p>= \(\frac {cos 2A}{sin 2A}\)</p> <p>= cot 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q15:

Prove that:

\(\frac {sin 2A + sin 5A - sinA}{cos 2A + cos 5A + cosA}\) = tan 2A


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 2A + sin 5A - sinA}{cos 2A + cos 5A + cosA}\)</p> <p>= \(\frac {sin 2A + 2 cos\frac {5A + A}2 . sin\frac {5A - A}2}{cos 2A + 2 cos\frac {5A + A}2 . cos\frac {5A - A}2}\)</p> <p>= \(\frac {sin 2A + 2 cos 3A . sin 2A}{cos 2A + 2 cos3A . cos 2A}\)</p> <p>= \(\frac {sin 2A (1 + 2 cos 3A)}{cos 2A (1 + 2 cos 3A)}\)</p> <p>= \(\frac {sin 2A}{cos 2A}\)</p> <p>= tan 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q16:

Prove that:

sin 36° sin 72° sin 108° sin 144° = \(\frac 5{16}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin 36&deg; sin 72&deg; sin 108&deg; sin 144&deg;</p> <p>= \(\frac 12\)(2 sin 36&deg; sin 144&deg;)&times; \(\frac 12\)(2 sin 72&deg; sin 108&deg;)</p> <p>= \(\frac 14\) [cos(36&deg; - 144&deg;) - cos(36&deg; + 144&deg;)] [cos (72&deg; - 108&deg;) - cos (72&deg; + 108&deg;)]</p> <p>= \(\frac 14\) [cos(-108&deg;) - cos(180&deg;)] [cos(-36&deg;) - cos(108&deg;)]</p> <p>= \(\frac 14\) [cos (90&deg; + 18&deg;) - (-1)] [cos 36&deg; - (-1)] [\(\because\) cos (-\(\theta\)) = cos\(\theta\)]</p> <p>= \(\frac 14\) [sin 18&deg; + 1] [cos 36&deg; + 1]</p> <p>= \(\frac 14\) [-\(\frac {\sqrt 5 - 1}4\) + 1] [\(\frac {\sqrt 5 + 1}4\) + 1]</p> <p>[\(\because\) sin 18&deg; = \(\frac {-\sqrt 5 - 1}4\), cos 36&deg; = \(\frac {\sqrt 5 + 1}4\)]</p> <p>= \(\frac 14\) (\(\frac {-\sqrt 5 + 1 + 4}4\)) (\(\frac {\sqrt 5 + 1 + 4}4\))</p> <p>= \(\frac 14\) (\(\frac {5 - \sqrt 5}4\)) (\(\frac {5 + \sqrt 5}4\))</p> <p>= \(\frac 14\)&times; \(\frac {(5)^2 - (\sqrt 5)^2}{16}\)</p> <p>= \(\frac 14\)&times; \(\frac {25 - 5}{16}\)</p> <p>= \(\frac {20}{4 &times; 16}\)</p> <p>= \(\frac 56\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q17:

Prove that:

cosA cos(60° - A) cos(60° + A) = \(\frac 14\) cos 3A


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cosAcos(60&deg; - A) cos(60&deg; + A)</p> <p>= \(\frac 12\) cosA [2cos(60&deg; - A) cos(60&deg; + A)]</p> <p>= \(\frac 12\) cosA [cos(60&deg; + A + 60&deg; - A) + cos(60&deg; + A - 60&deg; + A )]</p> <p>= \(\frac 12\) cosA [cos 120&deg; + co 2A]</p> <p>= \(\frac 12\) cosA&times; (-\(\frac 12\)) + \(\frac 12\) cosA cos 2A</p> <p>= -\(\frac 14\) cosA + \(\frac 12\)&times; \(\frac 12\) (2 cosA cos 2A)</p> <p>= -\(\frac 14\) cosA + \(\frac 14\) [cos(2A + A) + cos(2A - A)]</p> <p>= -\(\frac 14\) cosA + \(\frac 14\) (cos 3A + cosA)</p> <p>= -\(\frac 14\) cosA + \(\frac 14\) cos 3A + \(\frac 14\) cosA</p> <p>= \(\frac 14\) cos 3A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q18:

Find the value of sin 20° sin 40° sin 80°.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin 20&deg; sin 40&deg; sin 80&deg;</p> <p>= sin 20&deg; . \(\frac 12\) [2 sin 40&deg; sin 80&deg;]</p> <p>= \(\frac 12\) sin 20&deg; [cos(40&deg; - 80&deg;) - cos(40&deg; + 80&deg;)]</p> <p>= \(\frac 12\) sin 20&deg; [cos (-40&deg;) - cos 120&deg;]</p> <p>= \(\frac 12\) sin 20&deg; cos 40&deg; + \(\frac 14\) sin 20&deg; [\(\because\) cos(-\(\theta\)) = cos\(\theta\)]</p> <p>= \(\frac 12\)&times; \(\frac 12\) [2 sin 20&deg; cos 40&deg;] + \(\frac 14\)sin 20&deg;</p> <p>= \(\frac 14\) [sin (20&deg; + 40&deg;) + sin (20&deg; - 40&deg;)] + \(\frac 14\)sin 20&deg;</p> <p>= \(\frac 14\) [sin 60&deg; + sin (-20&deg;)] + \(\frac 14\)sin 20&deg;</p> <p>= \(\frac 14\) (\(\frac {\sqrt 3}2\) - sin 20&deg;) + \(\frac 14\) sin 20&deg; [\(\because\) sin(-\(\theta\)) = - sin\(\theta\)]</p> <p>= \(\frac {\sqrt 3}8\) - \(\frac 14\)sin 20&deg; + \(\frac 14\)sin 20&deg;</p> <p>= \(\frac {\sqrt 3}8\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q19:

Without using calculator or table, find the numerical value of:

8 sin 20° . sin 40° . sin 80°


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>8 sin 20&deg; . sin 40&deg; . sin 80&deg;</p> <p>= 4 sin 20&deg;&times; (2 sin 40&deg; sin 80&deg;)</p> <p>= 4 sin 20&deg; [cos (40&deg; - 80&deg;) - cos (40&deg; + 80&deg;)]</p> <p>= 4 sin 20&deg; [cos (-40&deg;) - cos 120&deg;]</p> <p>= 4 sin 20&deg; [cos 40&deg; - (-\(\frac 12\))] [\(\because\) cos (-\(\theta\)) = cos\(\theta\)]</p> <p>= 4 sin 20&deg; cos 40&deg; + 2 sin 20&deg;</p> <p>= 2&times; (2 sin 20&deg; cos 40&deg;) + 2 sin 20&deg;</p> <p>= 2 [sin (20&deg; + 40&deg;) + sin (20&deg; - 40&deg;)] + 2 sin 20&deg;</p> <p>= 2 [sin 60&deg; + sin (-20&deg;)] + 2 sin 20&deg;</p> <p>= 2 [\(\frac {\sqrt 3}2\) - sin 20&deg;] + 2 sin 20&deg; [\(\because\) sin (-\(\theta\)) = - sin\(\theta\)]</p> <p>= \(\sqrt 3\) - 2 sin 20&deg; + 2 sin 20&deg;</p> <p>= \(\sqrt 3\) <sub>Ans</sub></p>

Q20:

Prove that:

cos 20° cos 40° cos 60° cos 80° = \(\frac 1{16}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos 20&deg; cos 40&deg; cos 60&deg; cos 80&deg;</p> <p>= cos 20&deg; cos 40&deg; \(\frac 12\) cos 80&deg;</p> <p>= \(\frac 14\) cos 20&deg; (cos 40&deg; cos 80&deg;)</p> <p>= \(\frac 14\) cos 20&deg; [cos (40&deg; + 80&deg;) + cos (40&deg; - 80&deg;)]</p> <p>= \(\frac 14\) cos 20&deg; [cos 120&deg; + cos (-40&deg;)]</p> <p>= \(\frac 14\) cos 20&deg; [cos 120&deg; + cos 40&deg;]</p> <p>= \(\frac 14\) cos 20&deg; [-\(\frac 12\) + cos 40&deg;]</p> <p>= -\(\frac 18\) cos 20&deg; + \(\frac 14\) cos 20&deg; cos 40&deg;</p> <p>= -\(\frac 18\) cos 20&deg; + \(\frac 18\) [2 cos 20&deg; cos 40&deg;]</p> <p>= -\(\frac 18\) cos 20&deg; + \(\frac 18\) [cos (20&deg; + 40&deg;) + cos (20&deg; - 40&deg;)]</p> <p>= -\(\frac 18\) cos 20&deg; + \(\frac 18\) [cos 60&deg; + cos (-20&deg;)]</p> <p>= -\(\frac 18\) cos 20&deg; + \(\frac 18\) [\(\frac 12\) + cos 20&deg;]</p> <p>= -\(\frac 18\) cos 20&deg; + \(\frac 1{16}\) + \(\frac 18\) cos 20&deg;</p> <p>= \(\frac 1{16}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q21:

Prove that:

cos 20° cos 30° cos 40° cos 80° = \(\frac {\sqrt 3}{16}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos 20&deg; cos 30&deg; cos 40&deg; cos 80&deg;</p> <p>= cos 30&deg;&times; \(\frac 12\) cos 20&deg; (2 cos 40&deg; cos 80&deg;)</p> <p>= \(\frac {\sqrt 3}{2}\) cos 20&deg; [cos 120&deg; + cos (-40&deg;)]</p> <p>= \(\frac {\sqrt 3}4\) cos 20&deg; [(-\(\frac 12\)) + cos 40&deg;]</p> <p>= -\(\frac {\sqrt 3}8\) cos 20&deg; + \(\frac {\sqrt 3}4\) cos 20&deg; cos 40&deg;</p> <p>= -\(\frac {\sqrt 3}8\) cos 20&deg; + \(\frac {\sqrt 3}4\)&times; \(\frac 12\) (2 cos 20&deg; cos 40&deg;)</p> <p>= -\(\frac {\sqrt 3}8\) cos 20&deg; + \(\frac {\sqrt 3}8\) cos (20&deg; + 40&deg;) + cos (20&deg; - 40&deg;)</p> <p>= -\(\frac {\sqrt 3}8\) cos 20&deg; + \(\frac {\sqrt 3}8\) (cos 60&deg; + cos (-20&deg;))</p> <p>= -\(\frac {\sqrt 3}8\) cos 20&deg; + \(\frac {\sqrt 3}{16}\) + \(\frac {\sqrt 3}8\) cos 20&deg;</p> <p>= \(\frac {\sqrt 3}{16}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q22:

Prove that:

cos2\(\theta\) + cos2(\(\theta\) - 120°) + cos2(\(\theta\) + 120°) = \(\frac 32\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>2</sup>\(\theta\) + cos<sup>2</sup>(\(\theta\) - 120&deg;) + cos<sup>2</sup>(\(\theta\) + 120&deg;)</p> <p>= \(\frac 12\) [2 cos<sup>2</sup>\(\theta\) + 2 cos<sup>2</sup>(\(\theta\) + 120&deg;) + 2 cos<sup>2</sup>(\(\theta\) + 120&deg;)]</p> <p>= \(\frac 12\) [1 + cos 2\(\theta\) + 1 + cos 2(\(\theta\) - 120&deg;) + 1 + cos 2(\(\theta\) + 120&deg;)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + cos (2\(\theta\) + 240&deg;) + cos (2\(\theta\) + 240&deg;)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos (\(\frac {2\theta - 240&deg; + 2\theta + 240&deg;}2\)) cos (\(\frac {2\theta - 240&deg; - 2\theta - 240&deg;}2\))]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos\(\frac {4\theta}2\) cos\(\frac {-480&deg;}2\)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos 2\(\theta\) cos 240&deg;]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos 2\(\theta\) &times; -\(\frac 12\)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) - cos 2\(\theta\)]</p> <p>= \(\frac 32\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q23:

Prove that:

sin\(\theta\) sin (60° - \(\theta\)) . sin (60° + \(\theta\)) = \(\frac 14\) sin 3\(\theta\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin\(\theta\) sin (60&deg; - \(\theta\)) . sin (60&deg; + \(\theta\))</p> <p>= sin\(\theta\) \(\frac 12\) [2 sin (60&deg; - \(\theta\)) sin (60&deg; + \(\theta\))]</p> <p>= sin\(\theta\) \(\frac 12\) [cos (60&deg; - \(\theta\) - 60&deg; - \(\theta\)) - cos (60&deg; - \(\theta\) + 60&deg; + \(\theta\))]</p> <p>= sin\(\theta\) \(\frac 12\) [cos (-2\(\theta\)) - cos 120&deg;]</p> <p>= \(\frac 12\) sin\(\theta\) [cos 2\(\theta\) - (-\(\frac 12\))]</p> <p>= \(\frac 12\) sin\(\theta\) cos 2\(\theta\) + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 12\)&times; \(\frac 12\) [2 sin\(\theta\) cos 2\(\theta\)] + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 14\) [sin (\(\theta\) + 20&deg;) - sin (\(\theta\) - 2\(\theta\))] + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 14\) [sin 3\(\theta\) + sin(-\(\theta\))] + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 14\) sin 3\(\theta\) - \(\frac 14\) sin\(\theta\) + \(\frac 14\)sin\(\theta\)</p> <p>= \(\frac 14\) sin 3\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q24:

Prove that:

(cosA + cosB)2 + (sinA + sinB)2 = 4 cos2\(\frac {A - B}2\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=(cosA + cosB)<sup>2</sup> + (sinA + sinB)<sup>2</sup></p> <p>= (2 cos\(\frac {A + B}2\) . cos\(\frac {A - B}2\))<sup>2</sup> +(2 sin\(\frac {A + B}2\) . cos\(\frac {A - B}2\))<sup>2</sup></p> <p>= 4 cos<sup>2</sup>\(\frac {A + B}2\) . cos<sup>2</sup>\(\frac {A - B}2\) +4 sin<sup>2</sup>\(\frac {A + B}2\) . cos<sup>2</sup>\(\frac {A - B}2\)</p> <p>= 4 cos<sup>2</sup>\(\frac {A - B}2\) (cos<sup>2</sup>\(\frac {A + B}2\) + sin<sup>2</sup>\(\frac {A + B}2\))</p> <p>=4 cos<sup>2</sup>\(\frac {A - B}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q25:

If sin\(\alpha\) = k sin\(\beta\), prove that:

\(\frac {\alpha - \beta}2\) = \(\frac {k - 1}{k + 1}\) tan\(\frac {\alpha + \beta}2\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Given:</p> <p>\(\frac {sin\alpha}{sin\beta}\) = \(\frac k1\)</p> <p>By componendo and dividend, we get:</p> <p>\(\frac {sin\alpha + sin\beta}{sin\alpha - sin\beta}\) = \(\frac {k + 1}{k - 1}\)</p> <p>or, \(\frac {2 sin\frac {\alpha + \beta}2 . cos\frac {\alpha - \beta}2}{2 cos\frac {\alpha + \beta}2 . sin\frac {\alpha - \beta}2}\) =\(\frac {k + 1}{k - 1}\)</p> <p>or, tan\(\frac {\alpha + \beta}2\) . cot\(\frac {\alpha - \beta}2\) =\(\frac {k + 1}{k - 1}\)</p> <p>or, tan\(\frac {\alpha + \beta}2\)=\(\frac {k + 1}{k - 1}\) . \(\frac 1{cot\frac {\alpha - \beta}2}\)</p> <p>or,tan\(\frac {\alpha + \beta}2\) .\(\frac {k + 1}{k - 1}\) = tan\(\frac {\alpha - \beta}2\)</p> <p>&there4;tan\(\frac {\alpha - \beta}2\) =\(\frac {k + 1}{k - 1}\) .tan\(\frac {\alpha + \beta}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q26:

Prove that:

\(\frac {cos 7\theta + cos 3\theta - cos 5\theta - cos\theta}{sin 7\theta - sin 3\theta - sin 5\theta +sin\theta}\) = cot 2\(\theta\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cos 7\theta + cos 3\theta - cos 5\theta - cos\theta}{sin 7\theta - sin 3\theta - sin 5\theta +sin\theta}\)</p> <p>= \(\frac {(cos 7\theta + cos 3\theta) - (cos 5\theta + cos\theta)}{(sin 7\theta - sin 3\theta) - (sin 5\theta - sin\theta)}\)</p> <p>= \(\frac {2 cos\frac {7\theta + 3\theta}2 . cos\frac {7\theta - 3\theta}2 - 2 cos\frac {5\theta + \theta}2 . cos\frac {5\theta - \theta}2}{2 cos\frac {7\theta + 3\theta}2 . sin\frac {7\theta - 3\theta}2 - 2 cos\frac {5\theta + \theta}2 . sin\frac {5\theta - \theta}2}\)</p> <p>= \(\frac {2 cos 5\theta. cos 2\theta - 2 cos 3\theta. cos 2\theta}{2 cos 5\theta. sin 2\theta - 2 cos 3\theta. sin 2\theta}\)</p> <p>= \(\frac {2 cos 2\theta (cos 5\theta - cos 3\theta)}{2 sin 2\theta (cos 5\theta - cos 3\theta)}\)</p> <p>= cot 2\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q27:

Prove that:

\(\frac {cos 3A + 2 cos 5A + cos 7A}{cosA + 2 cos 3A + cos 5A}\) = cos 2A - sin 2A . tan 3A


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cos 3A + 2 cos 5A + cos 7A}{cosA + 2 cos 3A + cos 5A}\)</p> <p>= \(\frac {2 cos 5A + (cos 3A + cos 7A)}{2 cos 3A + (cosA + cos 5A)}\)</p> <p>= \(\frac {2 cos 5A + 2 cos\frac {3A + 7A}2 . cos\frac {3A - 7A}2}{2 cos 3A + 2 cos\frac {A + 5A}2 . cos\frac {A - 5A}2}\)</p> <p>= \(\frac {2 cos 5A + 2 cos 5A . cos (-2A)}{cos 3A + 2 cos 3A . cos (-2A)}\)</p> <p>= \(\frac {2 cos 5A + 2 cos 5A . cos 2A}{2 cos 3A + 2 cos 3A . cos 2A}\)</p> <p>= \(\frac {2 cos 5A (1 + cos 2A)}{2 cos 3A (1 + cos 2A)}\)</p> <p>= \(\frac {cos 5A}{cos 3A}\)</p> <p>= \(\frac {cos (2A + 3A)}{cos 3A}\)</p> <p>= \(\frac {cos 2A . cos 3A - sin 2A . sin 3A}{cos 3A}\)</p> <p>= \(\frac {cos 2A . cos 3A}{cos 3A}\) - \(\frac {sin 2A . sin 3A}{cos 3A}\)</p> <p>= cos 2A - sin 2A . tan 3A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q28:

Prove that:

cos2x . sin4x = \(\frac 1{32}\) (cos 6x - 2 cos 4x - cos 2x + 2)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>2</sup>x . sin<sup>4</sup>x</p> <p>= cos<sup>2</sup>x . sin<sup>2</sup>x . sin<sup>2</sup>x</p> <p>= sin<sup>2</sup>x \(\frac 14\) [4 sin<sup>2</sup>x . cos<sup>2</sup>x]</p> <p>= sin<sup>2</sup>x \(\frac 14\) [(2 sinx . cosx)<sup>2</sup>]</p> <p>= \(\frac 14\) sin<sup>2</sup>x . sin<sup>2</sup>2x</p> <p>= \(\frac 14\) sin<sup>2</sup>x . \(\frac 12\) . 2 sin<sup>2</sup>2x</p> <p>= \(\frac 18\) sin<sup>2</sup>x (2 sin<sup>2</sup>2x)</p> <p>= \(\frac 18\) sin<sup>2</sup>x (1 - cos 4x)</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) sin<sup>2</sup>x . cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) (1 - cos<sup>2</sup>x) . cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 18\) cos<sup>2</sup>x . cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 1{8}\) &times; \(\frac 12\) [2 cos<sup>2</sup>x .cos 4x]</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 1{16}\) cos 4x (1 + cos 2x)</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 1{16}\) cos 4x + \(\frac 1{16}\) cos 4x . cos 2x</p> <p>= \(\frac 18\) sin<sup>2</sup>x + \(\frac 1{16}\) cos 4x + \(\frac 1{32}\) 2 cos 4x . cos 2x - \(\frac 18\) cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\)[cos (4x + 2x) + cos (4x - 2x)]</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\)(cos 6x + cos 2x)</p> <p>= \(\frac 1{16}\) 2 sin<sup>2</sup>x - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\) cos 6x + \(\frac 1{32}\) cos 2x</p> <p>= \(\frac 1{16}\) (1 - cos 2x) - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\) cos 6x + \(\frac 1{32}\) cos 2x</p> <p>= \(\frac 1{16}\) - \(\frac 1{16}\) cos 2x -\(\frac 1{16}\) cos 4x + \(\frac 1{32}\) cos 6x + \(\frac 1{32}\) cos 2x</p> <p>= \(\frac 1{32}\) (2 - 2 cos 2x - 2 cos 4x + cos 6x + cos 2x)</p> <p>= \(\frac 1{32}\) (cos 6x - 2 cos 4x - cos 2x + 2)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q29:

a) sin 750 + sin 150

b) sin750 - sin1050

c) cos 150 - cos750

d) sin700 - cos 800 + cos 1400


Type: Short Difficulty: Easy

Q30:

cos 10\(5^o\) + cos 1\(5^o\) = \(\frac{1}{\sqrt 2}\)


Type: Short Difficulty: Easy

Q31:

 cos7\(0^o\)+cos4\(0^o\)=2 cos 5\(5^o\) . cos1\(5^o\)


Type: Short Difficulty: Easy

Q32:

$$ \cos 75^0 + \cos 15^0 = \sqrt {\frac{ 3}{2 }}$$


Type: Short Difficulty: Easy

Q33:

$$ \sin50^o + sin70^o=\sqrt3  cos10^o$$


Type: Short Difficulty: Easy

Q34:

$$ \cos40^o+sin40^o=\sqrt2cos5^o$$


Type: Short Difficulty: Easy

Q35:

$$ \cos40^o+sin\:40^o=\sqrt2\:cos\:5^o$$


Type: Short Difficulty: Easy

Q36:

$$ \sin65^o\:+\:cos\:65^o=\sqrt2\: cos20^o$$


Type: Short Difficulty: Easy

Videos

Sums and scalar multiples of linear transformations | Linear Algebra | Khan Academy
Factoring Trinomials Using the Product-and-Sum Method
 Computer System

Computer System

The systematic use of computer hardware, software, firmware and humane ware is known as a computer system. Computer system describes the arrangements of input unit, processing unit, output unit, software system, control panel, users and power supply to the computer system. A computer system may also be defined as the combination of essential components that makes computer to run smoothly.

Basically computer system can be described as the logical structure of computer. It is known as the anatomy of the computer. Like its physical structure anatomical structures of computer also consist of the input unit, processing unit and output devices.

Input Unit

Input unit of a computer are used for receiving data and instructions and communications. An input unit accepts the data and instructions given by the user and it converts the data and instructions from man readable to machine readable code. Some common input devices are mouse, keyboard, scanner, punched cards, disk reader etc.

Central processing Unit

It is the main body of the computer.It consists of three parts:

  1. Memory Unit

    It is a part of Central Processing Unit (CPU) where all the given instruction, data and the results are stored during processing period. By using the unique address we can identify the locations of memory. There are different types of memory among them popular are RAM (Random Access Memory), ROM (Read Only Memory). Memory refers to the electronic holding place for instructions and data where the computers microprocessors can reach quickly. Computer needs memory to store the data and process them.

    We can represent the memory using different units like:
    8 bits= 1 Byte (One Character)
    1024 Byte= 1 Kilo Byte (KB)
    1024 KB= 1 Mega Byte (MB)
    1024 MB= 1GB (Giga Byte)
    1024 GB= 1 TB (Tera Byte)
    1024 TB= 1PB (Peta Byte)
    1024 PB= 1 YB (Yotta yte)
    1024 YB= 1 ZB (Zeta Byte)

    Secondary Memory : It is the supplements of main memory. It is mainly used to transfer data or program from one computer to another computer. It also functions as back up devices which allows backing up the valuable information that you are working on i.e. storing data for future purpose. The most common types of auxiliary storage devices are magnetic tapes, magnetic disks, floppy disks, hard disks etc.

  2. Control Unit

    Control unit is the unit which controls the entire system of computer. That unit directs all operations inside the computer. It will make a proper sequence to direct the data and instructions from the memory to ALU for precise operations performed by ALU. The control unit of the CPU consists of a small, high speed memory used to store temporary results and certain control information. It controls singles to various part of computer.

    The main functions of control unit are given below.

    • It performs the data processing operations with aid of program prepared by the users and send control signals to various parts of the computer system.
    • It gives commands to transfer data from the input device to the memory to arithmetic logic unit.
    • It also transfers the results from ALU to the memory and then to the output devices.
    • It stores program in the memory.
    • It fetches the required instruction from the main storage and analyses each instruction and hence deduces what operation is to be performed.

  3. ALU(Arithmetic and Logical Unit)

    It comprises numbers of accumulators or resisters on its constructions. All the data from the memory directs by control unite gets loaded in ALU. It is one of the very important parts of the CPU. The primary task of the ALU is to perform various arithmetic and logical operations of the program.The arithmetic operations performed are addition, subtraction, multiplication and division. The logical instructions performed are logical AND operation, logical OR operation and logical NOT operation.


Output Unit

It is the unit through which all the results are given out by output devices. There are two types of output soft and hard output. Soft output is the output that displays on the monitor and hard output is the output printed on the paper. The popular output devices are: printers, monitor, plotter, sound etc.

Lesson

Computer Systems

Subject

Computer

Grade

Grade 9

Recent Notes

No recent notes.

Related Notes

No related notes.