Subjective Questions
Q1:
Prove that:
sin 50° - sin 70° + sin 10° = 0
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin 50° - sin 70° + sin 10°</p> <p>= 2 cos(\(\frac {50° + 70°}2\)) sin (\(\frac {50° - 70°}2\)) + sin 10°</p> <p>= 2 cos(\(\frac {120°}2\)) sin(\(\frac {-20°}2\)) + sin 10°</p> <p>= - 2 cos 60° sin 10° + sin 10°</p> <p>= - 2× \(\frac 12\) sin 10° + sin 10°</p> <p>= - sin 10° + sin 10°</p> <p>= 0</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q2:
Express sin 36° sin 24° as difference.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>sin 36° sin 24°</p> <p>= \(\frac 12\) [2 sin 36° sin 24°]</p> <p>= \(\frac 12\) [cos (36° - 24°) - cos(36° + 24°)]</p> <p>= \(\frac 12\) [cos 12° - cos 60°] <sub>Ans</sub></p>
Q3:
Express sin 50° cos 32° as sum.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>sin 50° cos 32°</p> <p>= \(\frac 12\) (2 sin 50° cos 32°)</p> <p>=\(\frac 12\) [sin (50° + 32°) + sin (50° - 32°)]</p> <p>= \(\frac 12\)[sin 82° + sin 18°] <sub>Ans</sub></p>
Q4:
Prove that:
\(\frac {cosB - cosA}{cosA + cosB}\) = tan\(\frac {A + B}{2}\) tan\(\frac {A - B}2\)
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cosB - cosA}{cosA + cosB}\)</p> <p>= \(\frac {2 sin(\frac {B + A}2) sin(\frac {A - B}2)}{2 cos(\frac {A + B}2) cos(\frac {A - B}2)}\)</p> <p>= tan\(\frac {A + B}{2}\) tan\(\frac {A - B}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q5:
Prove that:
\(\frac {sinA + sinB}{cosA + cosB}\) = tan(\(\frac {A + B}2\))
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sinA + sinB}{cosA + cosB}\)</p> <p>= \(\frac {2 sin(\frac {A + B}2) cos(\frac {A - B}2)}{2 cos(\frac {A + B}2) cos(\frac {A - B}2)}\)</p> <p>= \(\frac {sin(\frac {A + B}2)}{cos(\frac {A + B}2)}\)</p> <p>= tan(\(\frac {A + B}2\))</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>
Q6:
Prove that:
\(\frac {sin 5A - sin 3A}{cos 5A + cos 3A}\) = tanA
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 5A - sin 3A}{cos 5A + cos 3A}\)</p> <p>=\(\frac {2 cos(\frac {5A + 3A}2) sin(\frac {5A - 3A}2)}{2 cos(\frac {5A + 3A}2) cos(\frac {5A - 3A}2)}\)</p> <p>= \(\frac {cos4A sinA}{cos 4A cosA}\)</p> <p>= \(\frac {sinA}{cosA}\)</p> <p>= tanA</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>
Q7:
Evaluate without using calculator or table.
sin 70° - cos 80° + cos 140°
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>sin 70° - cos 80° + cos 140°</p> <p>= sin 70° + cos 140° - cos 80°</p> <p>= sin 70° - 2 sin\(\frac {140° + 80°}2\) sin\(\frac {140° - 80°}2\)</p> <p>= sin 70° - 2 sin\(\frac {220°}2\) sin\(\frac {60°}2\)</p> <p>= sin 70° - 2 sin 110° sin 30°</p> <p>= sin 70° - 2 sin(180° - 70°)× \(\frac 12\)</p> <p>= sin 70° - sin 70°</p> <p>= 0 <sub>Ans</sub></p>
Q8:
Without using calculator or table, prove that:
cos 70° + cos 40° = 2 cos 55° cos 15°
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos 70° + cos 40°</p> <p>= 2 cos\(\frac {70° + 40°}2\) cos\(\frac {70° - 40°}2\)</p> <p>= 2 cos\(\frac {110°}2\) cos\(\frac {30°}2\)</p> <p>= 2 cos 55° cos 15°</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q9:
Without using calculator or table, find the value of cos 15° - cos 75°.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>cos 15° - cos 75°</p> <p>= - 2 sin\(\frac {15 + 75}2\) sin\(\frac {15 - 75}2\)</p> <p>= - 2 sin\(\frac {90°}2\) sin\(\frac {(-60°)}2\)</p> <p>= - 2 sin 45°× - sin 30°</p> <p>= 2× \(\frac 1{\sqrt 2}\)× \(\frac 12\)</p> <p>= \(\frac 1{\sqrt 2}\) <sub>Ans</sub></p>
Q10:
Express as a product sin 50° + sin 20°.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>sin 50° + sin 20°</p> <p>= 2 sin\(\frac {50° + 20°}2\) cos\(\frac {50° - 20°}2\)</p> <p>= 2 sin\(\frac {70°}2\) cos\(\frac {30°}2\)</p> <p>= 2 sin 35° cos 15° <sub>Ans</sub></p>
Q11:
Express as a sum or difference: sin 25° cos 75°.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>sin 25° cos 75°</p> <p>= \(\frac 22\) sin 25° cos 75°</p> <p>= \(\frac 12\) (2 sin 25° cos 75°)</p> <p>= \(\frac 12\) [sin (25° + 75°) + sin (25° - 75°)]</p> <p>= \(\frac 12\) [sin 100° + sin (-50°)]</p> <p>= \(\frac 12\) [sin 100° - sin 50°] <sub>Ans</sub></p>
Q12:
Prove that:
sin 5\(\theta\) + sin 3\(\theta\) = 2 sin 4\(\theta\) cos\(\theta\)
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin 5\(\theta\) + sin 3\(\theta\)</p> <p>= 2 sin\(\frac {5\theta + 3\theta}2\) cos\(\frac {5\theta - 3\theta}2\)</p> <p>= 2 sin\(\frac {8\theta}2\) cos\(\frac {2\theta}2\)</p> <p>= 2 sin 4\(\theta\) cos\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>
Q13:
Prove that:
\(\frac {sinA + sinB}{sinA - sinB}\) = tan\(\frac {A + B}2\) cot\(\frac {A - B}2\)
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sinA + sinB}{sinA - sinB}\)</p> <p>= \(\frac {2 sin(\frac {A + B}2) cos(\frac {A - B}2)}{2 cos(\frac {A + B}2) sin(\frac {A - B}2)}\)</p> <p>= tan\(\frac {A + B}2\) cot\(\frac {A - B}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q14:
Prove that:
\(\frac {sin 3A - sinA}{cosA - cos 3A}\) = cot 2A
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 3A - sinA}{cosA - cos 3A}\)</p> <p>= \(\frac {2 cos\frac {3A + A}2 . sin\frac {3A - A}2}{2 sin\frac {3A + A}2 . sin\frac {3A - A}2}\)</p> <p>= \(\frac {cos\frac {4A}2 . sin\frac {2A}2}{sin\frac {4A}2 . sin\frac {2A}2}\)</p> <p>= \(\frac {cos 2A}{sin 2A}\)</p> <p>= cot 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>
Q15:
Prove that:
\(\frac {sin 2A + sin 5A - sinA}{cos 2A + cos 5A + cosA}\) = tan 2A
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 2A + sin 5A - sinA}{cos 2A + cos 5A + cosA}\)</p> <p>= \(\frac {sin 2A + 2 cos\frac {5A + A}2 . sin\frac {5A - A}2}{cos 2A + 2 cos\frac {5A + A}2 . cos\frac {5A - A}2}\)</p> <p>= \(\frac {sin 2A + 2 cos 3A . sin 2A}{cos 2A + 2 cos3A . cos 2A}\)</p> <p>= \(\frac {sin 2A (1 + 2 cos 3A)}{cos 2A (1 + 2 cos 3A)}\)</p> <p>= \(\frac {sin 2A}{cos 2A}\)</p> <p>= tan 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>
Q16:
Prove that:
sin 36° sin 72° sin 108° sin 144° = \(\frac 5{16}\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin 36° sin 72° sin 108° sin 144°</p> <p>= \(\frac 12\)(2 sin 36° sin 144°)× \(\frac 12\)(2 sin 72° sin 108°)</p> <p>= \(\frac 14\) [cos(36° - 144°) - cos(36° + 144°)] [cos (72° - 108°) - cos (72° + 108°)]</p> <p>= \(\frac 14\) [cos(-108°) - cos(180°)] [cos(-36°) - cos(108°)]</p> <p>= \(\frac 14\) [cos (90° + 18°) - (-1)] [cos 36° - (-1)] [\(\because\) cos (-\(\theta\)) = cos\(\theta\)]</p> <p>= \(\frac 14\) [sin 18° + 1] [cos 36° + 1]</p> <p>= \(\frac 14\) [-\(\frac {\sqrt 5 - 1}4\) + 1] [\(\frac {\sqrt 5 + 1}4\) + 1]</p> <p>[\(\because\) sin 18° = \(\frac {-\sqrt 5 - 1}4\), cos 36° = \(\frac {\sqrt 5 + 1}4\)]</p> <p>= \(\frac 14\) (\(\frac {-\sqrt 5 + 1 + 4}4\)) (\(\frac {\sqrt 5 + 1 + 4}4\))</p> <p>= \(\frac 14\) (\(\frac {5 - \sqrt 5}4\)) (\(\frac {5 + \sqrt 5}4\))</p> <p>= \(\frac 14\)× \(\frac {(5)^2 - (\sqrt 5)^2}{16}\)</p> <p>= \(\frac 14\)× \(\frac {25 - 5}{16}\)</p> <p>= \(\frac {20}{4 × 16}\)</p> <p>= \(\frac 56\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q17:
Prove that:
cosA cos(60° - A) cos(60° + A) = \(\frac 14\) cos 3A
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cosAcos(60° - A) cos(60° + A)</p> <p>= \(\frac 12\) cosA [2cos(60° - A) cos(60° + A)]</p> <p>= \(\frac 12\) cosA [cos(60° + A + 60° - A) + cos(60° + A - 60° + A )]</p> <p>= \(\frac 12\) cosA [cos 120° + co 2A]</p> <p>= \(\frac 12\) cosA× (-\(\frac 12\)) + \(\frac 12\) cosA cos 2A</p> <p>= -\(\frac 14\) cosA + \(\frac 12\)× \(\frac 12\) (2 cosA cos 2A)</p> <p>= -\(\frac 14\) cosA + \(\frac 14\) [cos(2A + A) + cos(2A - A)]</p> <p>= -\(\frac 14\) cosA + \(\frac 14\) (cos 3A + cosA)</p> <p>= -\(\frac 14\) cosA + \(\frac 14\) cos 3A + \(\frac 14\) cosA</p> <p>= \(\frac 14\) cos 3A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q18:
Find the value of sin 20° sin 40° sin 80°.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>sin 20° sin 40° sin 80°</p> <p>= sin 20° . \(\frac 12\) [2 sin 40° sin 80°]</p> <p>= \(\frac 12\) sin 20° [cos(40° - 80°) - cos(40° + 80°)]</p> <p>= \(\frac 12\) sin 20° [cos (-40°) - cos 120°]</p> <p>= \(\frac 12\) sin 20° cos 40° + \(\frac 14\) sin 20° [\(\because\) cos(-\(\theta\)) = cos\(\theta\)]</p> <p>= \(\frac 12\)× \(\frac 12\) [2 sin 20° cos 40°] + \(\frac 14\)sin 20°</p> <p>= \(\frac 14\) [sin (20° + 40°) + sin (20° - 40°)] + \(\frac 14\)sin 20°</p> <p>= \(\frac 14\) [sin 60° + sin (-20°)] + \(\frac 14\)sin 20°</p> <p>= \(\frac 14\) (\(\frac {\sqrt 3}2\) - sin 20°) + \(\frac 14\) sin 20° [\(\because\) sin(-\(\theta\)) = - sin\(\theta\)]</p> <p>= \(\frac {\sqrt 3}8\) - \(\frac 14\)sin 20° + \(\frac 14\)sin 20°</p> <p>= \(\frac {\sqrt 3}8\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q19:
Without using calculator or table, find the numerical value of:
8 sin 20° . sin 40° . sin 80°
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>8 sin 20° . sin 40° . sin 80°</p> <p>= 4 sin 20°× (2 sin 40° sin 80°)</p> <p>= 4 sin 20° [cos (40° - 80°) - cos (40° + 80°)]</p> <p>= 4 sin 20° [cos (-40°) - cos 120°]</p> <p>= 4 sin 20° [cos 40° - (-\(\frac 12\))] [\(\because\) cos (-\(\theta\)) = cos\(\theta\)]</p> <p>= 4 sin 20° cos 40° + 2 sin 20°</p> <p>= 2× (2 sin 20° cos 40°) + 2 sin 20°</p> <p>= 2 [sin (20° + 40°) + sin (20° - 40°)] + 2 sin 20°</p> <p>= 2 [sin 60° + sin (-20°)] + 2 sin 20°</p> <p>= 2 [\(\frac {\sqrt 3}2\) - sin 20°] + 2 sin 20° [\(\because\) sin (-\(\theta\)) = - sin\(\theta\)]</p> <p>= \(\sqrt 3\) - 2 sin 20° + 2 sin 20°</p> <p>= \(\sqrt 3\) <sub>Ans</sub></p>
Q20:
Prove that:
cos 20° cos 40° cos 60° cos 80° = \(\frac 1{16}\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos 20° cos 40° cos 60° cos 80°</p> <p>= cos 20° cos 40° \(\frac 12\) cos 80°</p> <p>= \(\frac 14\) cos 20° (cos 40° cos 80°)</p> <p>= \(\frac 14\) cos 20° [cos (40° + 80°) + cos (40° - 80°)]</p> <p>= \(\frac 14\) cos 20° [cos 120° + cos (-40°)]</p> <p>= \(\frac 14\) cos 20° [cos 120° + cos 40°]</p> <p>= \(\frac 14\) cos 20° [-\(\frac 12\) + cos 40°]</p> <p>= -\(\frac 18\) cos 20° + \(\frac 14\) cos 20° cos 40°</p> <p>= -\(\frac 18\) cos 20° + \(\frac 18\) [2 cos 20° cos 40°]</p> <p>= -\(\frac 18\) cos 20° + \(\frac 18\) [cos (20° + 40°) + cos (20° - 40°)]</p> <p>= -\(\frac 18\) cos 20° + \(\frac 18\) [cos 60° + cos (-20°)]</p> <p>= -\(\frac 18\) cos 20° + \(\frac 18\) [\(\frac 12\) + cos 20°]</p> <p>= -\(\frac 18\) cos 20° + \(\frac 1{16}\) + \(\frac 18\) cos 20°</p> <p>= \(\frac 1{16}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q21:
Prove that:
cos 20° cos 30° cos 40° cos 80° = \(\frac {\sqrt 3}{16}\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos 20° cos 30° cos 40° cos 80°</p> <p>= cos 30°× \(\frac 12\) cos 20° (2 cos 40° cos 80°)</p> <p>= \(\frac {\sqrt 3}{2}\) cos 20° [cos 120° + cos (-40°)]</p> <p>= \(\frac {\sqrt 3}4\) cos 20° [(-\(\frac 12\)) + cos 40°]</p> <p>= -\(\frac {\sqrt 3}8\) cos 20° + \(\frac {\sqrt 3}4\) cos 20° cos 40°</p> <p>= -\(\frac {\sqrt 3}8\) cos 20° + \(\frac {\sqrt 3}4\)× \(\frac 12\) (2 cos 20° cos 40°)</p> <p>= -\(\frac {\sqrt 3}8\) cos 20° + \(\frac {\sqrt 3}8\) cos (20° + 40°) + cos (20° - 40°)</p> <p>= -\(\frac {\sqrt 3}8\) cos 20° + \(\frac {\sqrt 3}8\) (cos 60° + cos (-20°))</p> <p>= -\(\frac {\sqrt 3}8\) cos 20° + \(\frac {\sqrt 3}{16}\) + \(\frac {\sqrt 3}8\) cos 20°</p> <p>= \(\frac {\sqrt 3}{16}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q22:
Prove that:
cos2\(\theta\) + cos2(\(\theta\) - 120°) + cos2(\(\theta\) + 120°) = \(\frac 32\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>2</sup>\(\theta\) + cos<sup>2</sup>(\(\theta\) - 120°) + cos<sup>2</sup>(\(\theta\) + 120°)</p> <p>= \(\frac 12\) [2 cos<sup>2</sup>\(\theta\) + 2 cos<sup>2</sup>(\(\theta\) + 120°) + 2 cos<sup>2</sup>(\(\theta\) + 120°)]</p> <p>= \(\frac 12\) [1 + cos 2\(\theta\) + 1 + cos 2(\(\theta\) - 120°) + 1 + cos 2(\(\theta\) + 120°)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + cos (2\(\theta\) + 240°) + cos (2\(\theta\) + 240°)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos (\(\frac {2\theta - 240° + 2\theta + 240°}2\)) cos (\(\frac {2\theta - 240° - 2\theta - 240°}2\))]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos\(\frac {4\theta}2\) cos\(\frac {-480°}2\)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos 2\(\theta\) cos 240°]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) + 2 cos 2\(\theta\) × -\(\frac 12\)]</p> <p>= \(\frac 12\) [3 + cos 2\(\theta\) - cos 2\(\theta\)]</p> <p>= \(\frac 32\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>
Q23:
Prove that:
sin\(\theta\) sin (60° - \(\theta\)) . sin (60° + \(\theta\)) = \(\frac 14\) sin 3\(\theta\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sin\(\theta\) sin (60° - \(\theta\)) . sin (60° + \(\theta\))</p> <p>= sin\(\theta\) \(\frac 12\) [2 sin (60° - \(\theta\)) sin (60° + \(\theta\))]</p> <p>= sin\(\theta\) \(\frac 12\) [cos (60° - \(\theta\) - 60° - \(\theta\)) - cos (60° - \(\theta\) + 60° + \(\theta\))]</p> <p>= sin\(\theta\) \(\frac 12\) [cos (-2\(\theta\)) - cos 120°]</p> <p>= \(\frac 12\) sin\(\theta\) [cos 2\(\theta\) - (-\(\frac 12\))]</p> <p>= \(\frac 12\) sin\(\theta\) cos 2\(\theta\) + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 12\)× \(\frac 12\) [2 sin\(\theta\) cos 2\(\theta\)] + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 14\) [sin (\(\theta\) + 20°) - sin (\(\theta\) - 2\(\theta\))] + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 14\) [sin 3\(\theta\) + sin(-\(\theta\))] + \(\frac 14\) sin\(\theta\)</p> <p>= \(\frac 14\) sin 3\(\theta\) - \(\frac 14\) sin\(\theta\) + \(\frac 14\)sin\(\theta\)</p> <p>= \(\frac 14\) sin 3\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q24:
Prove that:
(cosA + cosB)2 + (sinA + sinB)2 = 4 cos2\(\frac {A - B}2\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=(cosA + cosB)<sup>2</sup> + (sinA + sinB)<sup>2</sup></p> <p>= (2 cos\(\frac {A + B}2\) . cos\(\frac {A - B}2\))<sup>2</sup> +(2 sin\(\frac {A + B}2\) . cos\(\frac {A - B}2\))<sup>2</sup></p> <p>= 4 cos<sup>2</sup>\(\frac {A + B}2\) . cos<sup>2</sup>\(\frac {A - B}2\) +4 sin<sup>2</sup>\(\frac {A + B}2\) . cos<sup>2</sup>\(\frac {A - B}2\)</p> <p>= 4 cos<sup>2</sup>\(\frac {A - B}2\) (cos<sup>2</sup>\(\frac {A + B}2\) + sin<sup>2</sup>\(\frac {A + B}2\))</p> <p>=4 cos<sup>2</sup>\(\frac {A - B}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q25:
If sin\(\alpha\) = k sin\(\beta\), prove that:
\(\frac {\alpha - \beta}2\) = \(\frac {k - 1}{k + 1}\) tan\(\frac {\alpha + \beta}2\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given:</p> <p>\(\frac {sin\alpha}{sin\beta}\) = \(\frac k1\)</p> <p>By componendo and dividend, we get:</p> <p>\(\frac {sin\alpha + sin\beta}{sin\alpha - sin\beta}\) = \(\frac {k + 1}{k - 1}\)</p> <p>or, \(\frac {2 sin\frac {\alpha + \beta}2 . cos\frac {\alpha - \beta}2}{2 cos\frac {\alpha + \beta}2 . sin\frac {\alpha - \beta}2}\) =\(\frac {k + 1}{k - 1}\)</p> <p>or, tan\(\frac {\alpha + \beta}2\) . cot\(\frac {\alpha - \beta}2\) =\(\frac {k + 1}{k - 1}\)</p> <p>or, tan\(\frac {\alpha + \beta}2\)=\(\frac {k + 1}{k - 1}\) . \(\frac 1{cot\frac {\alpha - \beta}2}\)</p> <p>or,tan\(\frac {\alpha + \beta}2\) .\(\frac {k + 1}{k - 1}\) = tan\(\frac {\alpha - \beta}2\)</p> <p>∴tan\(\frac {\alpha - \beta}2\) =\(\frac {k + 1}{k - 1}\) .tan\(\frac {\alpha + \beta}2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q26:
Prove that:
\(\frac {cos 7\theta + cos 3\theta - cos 5\theta - cos\theta}{sin 7\theta - sin 3\theta - sin 5\theta +sin\theta}\) = cot 2\(\theta\)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cos 7\theta + cos 3\theta - cos 5\theta - cos\theta}{sin 7\theta - sin 3\theta - sin 5\theta +sin\theta}\)</p> <p>= \(\frac {(cos 7\theta + cos 3\theta) - (cos 5\theta + cos\theta)}{(sin 7\theta - sin 3\theta) - (sin 5\theta - sin\theta)}\)</p> <p>= \(\frac {2 cos\frac {7\theta + 3\theta}2 . cos\frac {7\theta - 3\theta}2 - 2 cos\frac {5\theta + \theta}2 . cos\frac {5\theta - \theta}2}{2 cos\frac {7\theta + 3\theta}2 . sin\frac {7\theta - 3\theta}2 - 2 cos\frac {5\theta + \theta}2 . sin\frac {5\theta - \theta}2}\)</p> <p>= \(\frac {2 cos 5\theta. cos 2\theta - 2 cos 3\theta. cos 2\theta}{2 cos 5\theta. sin 2\theta - 2 cos 3\theta. sin 2\theta}\)</p> <p>= \(\frac {2 cos 2\theta (cos 5\theta - cos 3\theta)}{2 sin 2\theta (cos 5\theta - cos 3\theta)}\)</p> <p>= cot 2\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q27:
Prove that:
\(\frac {cos 3A + 2 cos 5A + cos 7A}{cosA + 2 cos 3A + cos 5A}\) = cos 2A - sin 2A . tan 3A
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cos 3A + 2 cos 5A + cos 7A}{cosA + 2 cos 3A + cos 5A}\)</p> <p>= \(\frac {2 cos 5A + (cos 3A + cos 7A)}{2 cos 3A + (cosA + cos 5A)}\)</p> <p>= \(\frac {2 cos 5A + 2 cos\frac {3A + 7A}2 . cos\frac {3A - 7A}2}{2 cos 3A + 2 cos\frac {A + 5A}2 . cos\frac {A - 5A}2}\)</p> <p>= \(\frac {2 cos 5A + 2 cos 5A . cos (-2A)}{cos 3A + 2 cos 3A . cos (-2A)}\)</p> <p>= \(\frac {2 cos 5A + 2 cos 5A . cos 2A}{2 cos 3A + 2 cos 3A . cos 2A}\)</p> <p>= \(\frac {2 cos 5A (1 + cos 2A)}{2 cos 3A (1 + cos 2A)}\)</p> <p>= \(\frac {cos 5A}{cos 3A}\)</p> <p>= \(\frac {cos (2A + 3A)}{cos 3A}\)</p> <p>= \(\frac {cos 2A . cos 3A - sin 2A . sin 3A}{cos 3A}\)</p> <p>= \(\frac {cos 2A . cos 3A}{cos 3A}\) - \(\frac {sin 2A . sin 3A}{cos 3A}\)</p> <p>= cos 2A - sin 2A . tan 3A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>
Q28:
Prove that:
cos2x . sin4x = \(\frac 1{32}\) (cos 6x - 2 cos 4x - cos 2x + 2)
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>2</sup>x . sin<sup>4</sup>x</p> <p>= cos<sup>2</sup>x . sin<sup>2</sup>x . sin<sup>2</sup>x</p> <p>= sin<sup>2</sup>x \(\frac 14\) [4 sin<sup>2</sup>x . cos<sup>2</sup>x]</p> <p>= sin<sup>2</sup>x \(\frac 14\) [(2 sinx . cosx)<sup>2</sup>]</p> <p>= \(\frac 14\) sin<sup>2</sup>x . sin<sup>2</sup>2x</p> <p>= \(\frac 14\) sin<sup>2</sup>x . \(\frac 12\) . 2 sin<sup>2</sup>2x</p> <p>= \(\frac 18\) sin<sup>2</sup>x (2 sin<sup>2</sup>2x)</p> <p>= \(\frac 18\) sin<sup>2</sup>x (1 - cos 4x)</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) sin<sup>2</sup>x . cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) (1 - cos<sup>2</sup>x) . cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 18\) cos<sup>2</sup>x . cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 1{8}\) × \(\frac 12\) [2 cos<sup>2</sup>x .cos 4x]</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 1{16}\) cos 4x (1 + cos 2x)</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 18\) cos 4x + \(\frac 1{16}\) cos 4x + \(\frac 1{16}\) cos 4x . cos 2x</p> <p>= \(\frac 18\) sin<sup>2</sup>x + \(\frac 1{16}\) cos 4x + \(\frac 1{32}\) 2 cos 4x . cos 2x - \(\frac 18\) cos 4x</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\)[cos (4x + 2x) + cos (4x - 2x)]</p> <p>= \(\frac 18\) sin<sup>2</sup>x - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\)(cos 6x + cos 2x)</p> <p>= \(\frac 1{16}\) 2 sin<sup>2</sup>x - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\) cos 6x + \(\frac 1{32}\) cos 2x</p> <p>= \(\frac 1{16}\) (1 - cos 2x) - \(\frac 1{16}\) cos 4x + \(\frac 1{32}\) cos 6x + \(\frac 1{32}\) cos 2x</p> <p>= \(\frac 1{16}\) - \(\frac 1{16}\) cos 2x -\(\frac 1{16}\) cos 4x + \(\frac 1{32}\) cos 6x + \(\frac 1{32}\) cos 2x</p> <p>= \(\frac 1{32}\) (2 - 2 cos 2x - 2 cos 4x + cos 6x + cos 2x)</p> <p>= \(\frac 1{32}\) (cos 6x - 2 cos 4x - cos 2x + 2)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>
Q29:
a) sin 750 + sin 150
b) sin750 - sin1050
c) cos 150 - cos750
d) sin700 - cos 800 + cos 1400
Type: Short
Difficulty: Easy
Q30:
cos 10\(5^o\) + cos 1\(5^o\) = \(\frac{1}{\sqrt 2}\)
Type: Short
Difficulty: Easy
Q31:
cos7\(0^o\)+cos4\(0^o\)=2 cos 5\(5^o\) . cos1\(5^o\)
Type: Short
Difficulty: Easy
Q32:
$$ \cos 75^0 + \cos 15^0 = \sqrt {\frac{ 3}{2 }}$$
Type: Short
Difficulty: Easy
Q33:
$$ \sin50^o + sin70^o=\sqrt3 cos10^o$$
Type: Short
Difficulty: Easy
Q34:
$$ \cos40^o+sin40^o=\sqrt2cos5^o$$
Type: Short
Difficulty: Easy
Q35:
$$ \cos40^o+sin\:40^o=\sqrt2\:cos\:5^o$$
Type: Short
Difficulty: Easy
Q36:
$$ \sin65^o\:+\:cos\:65^o=\sqrt2\: cos20^o$$
Type: Short
Difficulty: Easy