Importance of the Office

The office of an organization is the most important unit. It is regarded as the main spring of a watch and steering of a car. It is equally important to a government unit, business organization as well as service motive organization. This note provides the information about importance of office and formation of office.

Summary

The office of an organization is the most important unit. It is regarded as the main spring of a watch and steering of a car. It is equally important to a government unit, business organization as well as service motive organization. This note provides the information about importance of office and formation of office.

Things to Remember

  • The office of an organization is the most important unit. It is regarded as the mainspring of a watch and steering of a car. 
  • It essential to perform a number of administrative as well as clerical functions in the process of achieving the organizational objectives. 

MCQs

No MCQs found.

Subjective Questions

Q1:

Prove that:

\(\frac {sin\theta + sin2\theta}{1 + cos\theta + cos2\theta}\) = tan\(\theta\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin\theta + sin2\theta}{1 + cos\theta + cos2\theta}\)</p> <p>= \(\frac {sin\theta + 2sin\theta cos\theta}{1 + cos\theta + 2cos^2\theta - 1}\)</p> <p>= \(\frac {sin\theta (1 + 2cos\theta)}{cos\theta (1 + 2cos\theta)}\)</p> <p>= \(\frac {sin\theta}{cos\theta}\)</p> <p>= tan\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>proved</sub></p>

Q2:

Express sin3A cos2A in terms of sin A.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin3A cos<sup>2</sup>A</p> <p>= (3 sinA - 4 sin<sup>3</sup>A) (1 - sin<sup>2</sup>A)</p> <p>= 3 sinA - 4 sin<sup>3</sup>A - 3 sin<sup>3</sup>A + 4 sin<sup>5</sup>A</p> <p>= 4 sin<sup>5</sup>A - 7 sin<sup>3</sup>A + 3 sinA <sub>Ans</sub></p>

Q3:

Prove that:

cos 2A = \(\frac {1 - tan^2A}{1 + tan^2A}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>L.H.S.</p> <p>= cos 2A</p> <p>= \(\frac {cos^2A - sin^2A}{1}\)</p> <p>= \(\frac {cos^2A - sin^2A}{cos^2A + sin^2A}\)</p> <p>=\(\frac {{\frac {cos^2A}{sin^2A}} - {\frac {sin^2A}{cos^2A}}}{{\frac {cos^2A}{cos^2A}} + {\frac {sin^2A}{cos^2A}}}\)</p> <p>= \(\frac {1 - tan^2A}{1 + tan^2A}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q4:

If tan A = \(\frac 34\), find the value of sin 2A and cos 2A.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>tan A = \(\frac 34\)</p> <p>sin 2A</p> <p>= \(\frac {2tan A}{1 + tan^2A}\)</p> <p>= \(\frac {2 &times; \frac 34}{1 + (\frac {3}{4})^2}\)</p> <p>= \(\frac {\frac 32}{1 + \frac {9}{16}}\)</p> <p>= \(\frac 32\)&times; \(\frac {16}{25}\)</p> <p>= \(\frac {24}{25}\) <sub>Ans</sub></p> <p>cos 2A</p> <p>= \(\frac {1 - tan^2A}{1 + tan^2A}\)</p> <p>= \(\frac{1 -(\frac {3}{4})^2}{1 + (\frac {3}{4})^2}\)</p> <p>= \(\frac {1 - \frac 9{16}}{1 +\frac 9{16}}\)</p> <p>= \(\frac {\frac {16 - 9}{16}}{\frac {16 + 9}{16}}\)</p> <p>= \(\frac {7}{16}\)&times; \(\frac {16}{25}\)</p> <p>= \(\frac 7{25}\) <sub>Ans</sub></p>

Q5:

Prove that:

\(\frac {sin 2A}{1 + cos 2A}\) = tan A


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 2A}{1 + cos 2A}\)</p> <p>= \(\frac {2 sin A cos A}{2 cos^2A}\)</p> <p>= \(\frac {sin A}{cos A}\)</p> <p>= tan A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q6:

If cos\(\alpha\) = \(\frac {\sqrt 3}{2}\), find the value of sin3\(\alpha\) and cos3\(\alpha\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos\(\alpha\) = \(\frac {\sqrt 3}{2}\)</p> <p>sin\(\alpha\)</p> <p>= \(\sqrt {1 - cos^2\alpha}\)</p> <p>= \(\sqrt {1 - (\frac {\sqrt 3}{2})^2}\)</p> <p>=\(\sqrt {1 - \frac 34}\)</p> <p>=\(\sqrt {\frac {4 - 3}{4}}\)</p> <p>=\(\sqrt {\frac 14}\)</p> <p>= \(\frac 12\)</p> <p>sin3\(\alpha\)</p> <p>= 3 sin\(\alpha\) - 4 sin<sup>3</sup>\(\alpha\)</p> <p>= 3&times; \(\frac 12\) - 4&times; (\(\frac 12\))<sup>3</sup></p> <p>= \(\frac 32\) - \(\frac 48\)</p> <p>= \(\frac 32\) - \(\frac 12\)</p> <p>= \(\frac {3 - 1}{2}\)</p> <p>= \(\frac 22\)</p> <p>= 1 <sub>Ans</sub></p> <p>Again,</p> <p>cos 3\(\alpha\)</p> <p>= 4 cos<sup>2</sup>\(\alpha\) - 3 cos\(\alpha\)</p> <p>= 4 (\(\frac {\sqrt 3}{2}\))<sup>3</sup>- 3&times; \(\frac {\sqrt 3}{2}\)</p> <p>= \(\frac {12\sqrt 3}{8}\) - \(\frac {3\sqrt 3}{2}\)</p> <p>= \(\frac {3\sqrt 3}{2}\) - \(\frac {3\sqrt 3}{2}\)</p> <p>= 0 <sub>Ans</sub></p> <p></p>

Q7:

Prove that:

4 (cos310° + sin320°) = 3 (cos 10° + sin 20°) 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=4 (cos<sup>3</sup>10&deg; + sin<sup>3</sup>20&deg;)</p> <p>=4cos<sup>3</sup>10&deg; + 4sin<sup>3</sup>20&deg;</p> <p>= [cos 3(10&deg;) + 3 cos 10&deg;] + [3 sin20&deg; - sin 3(20&deg;)]</p> <p>= cos 30&deg; + 3 cos 10&deg; + 3 sin 20&deg; - sin 60&deg;</p> <p>= \(\frac {\sqrt 3}{2}\) + 3 (cos 10&deg; + sin 20&deg;) - \(\frac {\sqrt 3}{2}\)</p> <p>=3 (cos 10&deg; + sin 20&deg;)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q8:

If cos\(\theta\) = \(\frac {12}{13}\) and sin\(\alpha\) = \(\frac 45\), find the values of sin 2\(\theta\) and cos 2\(\alpha\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos\(\theta\) = \(\frac {12}{13}\) and sin\(\alpha\) = \(\frac 45\)</p> <p>sin\(\theta\)</p> <p>= \(\sqrt {1 - cos^2\theta}\)</p> <p>= \(\sqrt {1 - (\frac {12}{13})^2}\)</p> <p>= \(\sqrt {\frac {169 - 144}{169}}\)</p> <p>= \(\sqrt {\frac {25}{169}}\)</p> <p>= \(\frac 5{13}\)</p> <p>cos\(\alpha\)</p> <p>= \(\sqrt {1 - sin^2\alpha}\)</p> <p>= \(\sqrt {1 - (\frac {4}{5})^2}\)</p> <p>= \(\sqrt {\frac {25 - 16}{25}}\)</p> <p>= \(\sqrt {\frac 9{25}}\)</p> <p>= \(\frac 35\)</p> <p>&there4; sin 2\(\theta\) = 2 sin\(\theta\) cos\(\theta\) = 2&times; \(\frac 5{13}\)&times; \(\frac {12}{13}\) = \(\frac {120}{169}\) <sub>Ans</sub></p> <p>&there4; cos 2\(\alpha\) = 2 cos<sup>2</sup>\(\alpha\) - 1 = 2&times; \(\frac 35\)&times; \(\frac 35\) - 1 = \(\frac {18 - 25}{25}\) = -\(\frac 7{25}\) Ans</p> <p></p>

Q9:

Prove that:

tan 4\(\theta\) - tan 3\(\theta\) - tan\(\theta\) = tan 4\(\theta\) . tan 3\(\theta\) . tan\(\theta\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>3\(\theta\) + \(\theta\) = 4\(\theta\)</p> <p>Putting tan on both,</p> <p>tan (3\(\theta\) + \(\theta\)) = tan 4\(\theta\)</p> <p>or, \(\frac {tan 3\theta + tan\theta}{1 - tan 3\theta tan\theta}\) = tan 4\(\theta\)</p> <p>or, tan 3\(\theta\) + tan\(\theta\) = tan 4\(\theta\) - tan\(\theta\) tan 3\(\theta\) tan 4\(\theta\)</p> <p>or,tan\(\theta\) tan 3\(\theta\) tan 4\(\theta\) =tan 4\(\theta\) -tan 3\(\theta\) -tan\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>proved</sub></p>

Q10:

Prove that:

\(\frac {sin 5\theta}{sin \theta}\) - \(\frac {cos 5\theta}{cos \theta}\) = 4 cos 2\(\theta\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 5\theta}{sin \theta}\) - \(\frac {cos 5\theta}{cos \theta}\)</p> <p>= \(\frac {sin 5\theta cos \theta - cos 5\theta sin \theta}{sin \theta cos \theta}\)</p> <p>= \(\frac {sin (5\theta - \theta)}{sin\theta cos\theta}\)</p> <p>= \(\frac {sin 4\theta}{sin\theta cos\theta}\)</p> <p>= \(\frac {sin 2(2\theta)}{sin\theta cos\theta}\)</p> <p>= \(\frac {2 sin 2\theta cos 2\theta}{sin\theta cos\theta}\)</p> <p>= \(\frac {2 &times; 2 sin\theta cos\theta cos2\theta}{sin\theta cos\theta}\)</p> <p>= 4 cos 2\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q11:

Prove that:

\(\frac {cos^3A + sin^3A}{cosA + sinA}\) = 1 - \(\frac 12\)sin 2A


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= \(\frac {cos^3A + sin^3A}{cosA + sinA}\)</p> <p>= \(\frac {(cosA + sinA)(cos^2A + sin^2A - sinA cosA)}{cosA + sinA}\)</p> <p>= 1 - \(\frac {2 sinA cosA}{2}\)</p> <p>= 1 - \(\frac 12\)sin 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q12:

Prove that:

\(\frac 1{tan3A - tanA}\) - \(\frac 1{cot3A - cotA}\) = cot2A


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac 1{tan3A - tanA}\) - \(\frac 1{cot3A - cotA}\)</p> <p>=\(\frac 1{tan3A - tanA}\) - \(\frac 1{{\frac 1{tan3A}} - {\frac 1{tanA}}}\)</p> <p>=\(\frac 1{tan3A - tanA}\) - \(\frac {\frac 1{tanA - tan3A}}{tan3A tanA}\)</p> <p>=\(\frac 1{tan3A - tanA}\) - \(\frac {tan 3A tanA}{tanA - tan3A}\)</p> <p>= \(\frac 1{tan3A - tanA}\) +\(\frac {tan 3A tanA}{tan3A - tanA}\)</p> <p>= \(\frac {1 + tan 3A tanA}{tan3A - tanA}\)</p> <p>= \(\frac {\frac 1{tan3A - tanA}}{1 + tan3A tanA}\)</p> <p>= \(\frac 1{cot (3A - A)}\)</p> <p>= \(\frac 1{cot2A}\)</p> <p>= tan 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>proved</sub></p>

Q13:

Prove that:

\(\frac {cos\theta}{cos\theta - sin\theta}\) - \(\frac {cos\theta}{cos\theta + sin\theta}\) = tan 2\(\theta\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cos\theta}{cos\theta - sin\theta}\) -\(\frac {cos\theta}{cos\theta +sin\theta}\)</p> <p>= \(\frac {cos\theta (cos\theta + sin\theta) - cos\theta (cos\theta - sin\theta)}{(cos\theta - sin\theta) (cos\theta + sin\theta)}\)</p> <p>= \(\frac {cos^2\theta + cos\theta sin\theta - cos^2\theta + cos\theta sin\theta}{cos^2\theta - sin^2\theta}\)</p> <p>= \(\frac {2 sin\theta cos\theta}{cos^2\theta - sin^2\theta}\)</p> <p>= \(\frac {sin 2\theta}{cos 2\theta}\)</p> <p>= tan 2\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q14:

Prove that:

\(\frac {1 - cos 2A + sin2A}{1 + cos 2A + sin2A}\) = tanA


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {1 - cos 2A + sin2A}{1 + cos 2A + sin2A}\)</p> <p>= \(\frac {2sin^2A + 2sinAcosA}{2cos^2A + 2sinAcosA}\) [\(\because\) 1 - cos2A = 2sin<sup>2</sup>A and 1 + cos2A = 2cos<sup>2</sup>A]</p> <p>= \(\frac {2sin A (sinA + cosA)}{2cosA (cosA + sinA)}\)</p> <p>= tanA</p> <p>Hence, L.H.S. = R.H.S. <sub>proved</sub></p>

Q15:

Prove that:

\(\frac {1 - tan^2(\frac {π}{4} - \theta)}{1 + tan^2(\frac {π}{4} - \theta)}\) = sin 2\(\theta\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {1 - tan^2(\frac {&pi;}{4} - \theta)}{1 + tan^2(\frac {&pi;}{4} - \theta)}\)</p> <p>= cos 2(\(\frac {&pi;}{4} - \theta)\)</p> <p>= cos(\(\frac {&pi;}{2} - 2\theta)\)</p> <p>= sin 2\(\theta\)</p> <p>hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q16:

Prove that:

\(\frac {sin 3A}{sinA}\) - \(\frac {cos 3A}{cosA}\) = 2


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 3A}{sinA}\) - \(\frac {cos 3A}{cosA}\)</p> <p>= \(\frac {3 sinA - 4 sin^3A}{sinA}\) - \(\frac {4 cos^3A - 3 cosA}{cosA}\)</p> <p>= \(\frac {sinA (3 - 4 sin^2A)}{sinA}\) - \(\frac {cosA (4 cos^2A - 3)}{cosA}\)</p> <p>= 3 - 4 (1 - cos<sup>2</sup>A) - 4 cos<sup>2</sup>A + 3</p> <p>= 3 - 4 + 4 cos<sup>2</sup>A - 4 cos<sup>2</sup>A + 3</p> <p>= 6 - 4</p> <p>= 2</p> <p>Hence, L.H.S = R.H.S. <sub>Proved</sub></p>

Q17:

Prove that:

4 cosec 2A . cot 2A = cosec2A - sec2A


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=4 cosec 2A . cot 2A</p> <p>= 4(\(\frac 1{sin2A})\) . \(\frac {cos 2A}{sin 2A}\)</p> <p>= \(\frac {4 (cos^2A - sin^2A)}{2 sinA cosA . 2 sinA cosA}\)</p> <p>= \(\frac {cos^2A - sin^2A}{sin^2A cos^2A}\)</p> <p>= \(\frac {cos^2A}{sin^2A cos^2A}\) - \(\frac {sin^2A}{sin^2A cos^2A}\)</p> <p>= \(\frac {1}{sin^2A}\) - \(\frac {1}{cos^2A}\)</p> <p>= cosec<sup>2</sup>A - sec<sup>2</sup>A</p> <p>Hence, L.H.S. = R.H.S. <sub>proved</sub></p> <p></p>

Q18:

Find the value of tan 3A if cosA = \(\frac {15}{17}\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cosA = \(\frac {15}{17}\)</p> <p>cosA</p> <p>= \(\sqrt {1 - cos^2A}\)</p> <p>= \(\sqrt {1 - (\frac {15}{17}})^2\)</p> <p>= \(\sqrt {1 - \frac {225}{289}}\)</p> <p>= \(\sqrt {\frac {289 - 225}{289}}\)</p> <p>= \(\sqrt {\frac {64}{289}}\)</p> <p>= \(\frac 8{17}\)</p> <p>&there4; tanA = \(\frac {sinA}{cosA}\) = \(\frac {\frac {8}{17}}{\frac {15}{17}}\) = \(\frac 8{15}\)</p> <p>Now,</p> <p>tan 3A</p> <p>= \(\frac {3 tanA - tan^3A}{1 - 3 tan^2A}\)</p> <p>= \(\frac {3 &times; \frac 8{15} - (\frac 8{15})^3}{1 - 3 &times;(\frac 8{15})^2}\)</p> <p>= \(\frac {\frac {24}{15} - \frac {512}{3375}}{1 - \frac {192}{225}}\)</p> <p>= \(\frac {\frac {5400 - 512}{3375}}{\frac {225 - 192}{225}}\)</p> <p>= \(\frac {\frac {4888}{3375}}{\frac {33}{225}}\)</p> <p>= \(\frac {4888}{3375}\)&times; \(\frac {225}{33}\)</p> <p>= \(\frac {4888}{15 &times; 33}\)</p> <p>= \(\frac {4888}{495}\) <sub>Ans</sub></p> <p></p>

Q19:

Prove that:

\(\frac 1{tan 3A + tanA}\) - \(\frac 1{cot 3A + cotA}\) = cot 4A


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac 1{tan 3A + tanA}\) - \(\frac 1{cot 3A + cotA}\)</p> <p>= \(\frac 1{tan 3A + tanA}\) - \(\frac 1{{\frac 1{tan 3A}} + {\frac 1{tanA}}}\)</p> <p>= \(\frac 1{tan 3A + tanA}\) - \(\frac {\frac 1{tanA + tan3A}}{tan3A tanA}\)</p> <p>= \(\frac 1{tan 3A + tanA}\) - \(\frac {tan 3A tanA}{tan 3A + tanA}\)</p> <p>= \(\frac {1 - tan 3A tanA}{tan 3A + tanA}\)</p> <p>= \(\frac {\frac 1{tan 3A + tanA}}{1 - tan3A tanA}\)</p> <p>= \(\frac 1{tan (3A + A)}\)</p> <p>= \(\frac 1{tan 4A}\)</p> <p>= cot 4A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q20:

Prove that:

\(\frac {1 + sin 2A}{cos 2A}\) = \(\frac {cosA + sinA}{cosA - sinA}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {1 + sin 2A}{cos 2A}\)</p> <p>= \(\frac {sin^2A + cos^2A + 2 sinA cosA}{cos^2A - sin^2A}\)</p> <p>= \(\frac {(cosA + sinA)^2}{(cosA + sinA) (cosA - sinA)}\)</p> <p>= \(\frac {cosA + sinA}{cosA - sinA}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q21:

Find the exact value of sin 2\(\theta\) if tan \(\theta\) = \(\frac 43\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin 2\(\theta\)</p> <p>= \(\frac {2 tan\theta}{1 + tan^2\theta}\)</p> <p>= \(\frac {2 &times; \frac 43}{1 + (\frac 43)^2}\)</p> <p>= \(\frac {\frac 83}{1 + \frac {16}{9}}\)</p> <p>= \(\frac {\frac83}{\frac {9 + 16}{9}}\)</p> <p>= \(\frac {\frac 83}{\frac {25}9}\)</p> <p>= \(\frac 83\)&times; \(\frac 9{25}\)</p> <p>= \(\frac {24}{25}\) <sub>Ans</sub></p>

Q22:

Find the value of sin 2A if cosA = \(\frac 35\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos A = \(\frac 35\)</p> <p>sinA</p> <p>= \(\sqrt {1 - cos^2 A}\)</p> <p>= \(\sqrt {1 - (\frac 35)^2}\)</p> <p>= \(\sqrt {1 - \frac 9{25}}\)</p> <p>= \(\sqrt {\frac {25 - 9}{25}}\)</p> <p>= \(\sqrt {\frac {16}{25}}\)</p> <p>= \(\frac 45\)</p> <p>Now,</p> <p>sin 2A</p> <p>= 2 sinA cosA</p> <p>= 2&times; \(\frac 45\)&times; \(\frac 35\)</p> <p>= \(\frac {24}{25}\) <sub>Ans</sub></p>

Q23:

Prove that:

sin4A = \(\frac 18\)(3 - 4 cos 2A + cos 4A)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= sin<sup>4</sup>A</p> <p>= (sin<sup>2</sup>A)<sup>2</sup></p> <p>=[\(\frac 12\) (1 - cos 2A)]<sup>2</sup></p> <p>= \(\frac 14\) [1 - 2 cos 2A + cos<sup>2</sup>A]</p> <p>= \(\frac14\) [1 - 2 cos2A + (\(\frac {1 + cos4A}{2}\))]</p> <p>= \(\frac 14\) [\(\frac {2 - 4 cos2A + 1 + cos4A}2\)]</p> <p>= \(\frac 18\)(3 - 4 cos 2A + cos 4A)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q24:

Prove that:

cosec 2A + cot 4A = cotA - cosec 4A


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cosec 2A + cot 4A = cotA - cosec 4A</p> <p>or, cot 4A + cosec 4A = cotA - cosec 2A</p> <p>L.H.S.</p> <p>= cot 4A + cosec 4A</p> <p>= \(\frac {cos 4A}{sin 4A}\) + \(\frac 1{sin 4A}\)</p> <p>= \(\frac {cos 4A + 1}{sin 4A}\)</p> <p>= \(\frac {2 cos^22A - 1 + 1}{2 sin 2A cos 2A}\)</p> <p>= \(\frac {2 cos^22A}{2 sin 2A cos 2A}\)</p> <p>= \(\frac {cos 2A}{sin 2A}\)</p> <p>= \(\frac {2 cos^2A - 1}{2 sinA cosA}\)</p> <p>= \(\frac {2 cos^2A}{2 sinA cosA}\) - \(\frac 1{2 sinA cosA}\)</p> <p>= cotA - \(\frac 1{sin 2A}\)</p> <p>= cotA - cosec 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q25:

Prove that:

\(\frac {\sqrt 3}{sin 20°}\) - \(\frac 1{cos 20°}\) = 4


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {\sqrt 3}{sin 20&deg;}\) - \(\frac 1{cos 20&deg;}\)</p> <p>= \(\frac {\sqrt 3 cos 20&deg; - sin 20&deg;}{sin 20&deg; cos 20&deg;}\)</p> <p>= \(\frac {2 (\frac {\sqrt 3}{2} cos 20&deg; - \frac 12 sin 20&deg;)}{sin 20&deg; cos 20&deg;}\)</p> <p>= \(\frac {2 &times; 2 (sin 60&deg; cos 20&deg; - cos 60&deg; sin 20&deg;)}{2 sin 20&deg; cos 20&deg;}\)</p> <p>= \(\frac {4 [sin (60&deg; - 20&deg;)]}{sin 2 &times; 20&deg;}\)</p> <p>= \(\frac {4 sin 40&deg;}{sin 40&deg;}\)</p> <p>= 4</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q26:

Prove that:

\(\frac 1{sin 10°}\) - \(\frac {\sqrt 3}{cos 10°}\) = 4


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {1}{sin 10&deg;}\) - \(\frac {\sqrt 3}{cos 10&deg;}\)</p> <p>= \(\frac {cos 10&deg; - \sqrt 3 sin 10&deg;}{sin 10&deg; cos 10&deg;}\)</p> <p>= \(\frac {2 (\frac {1}{2} cos 10&deg; - \frac {\sqrt 3}2 sin 10&deg;)}{sin 10&deg; cos 10&deg;}\)</p> <p>= \(\frac {2 &times; 2 (sin 30&deg; cos10&deg; - cos 30&deg; sin 10&deg;)}{2 sin 10&deg; cos 10&deg;}\)</p> <p>= \(\frac {4 [sin (30&deg; - 10&deg;)]}{sin 2 &times; 10&deg;}\)</p> <p>= \(\frac {4 sin 20&deg;}{sin 20&deg;}\)</p> <p>= 4</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q27:

Prove that:

cos 5A = 16 cos 5A - 20 cos3A + 5 cosA


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos 5A</p> <p>= cos (2A + 3A)</p> <p>= cos 2A cos 3A - sin 2A sin 3A</p> <p>= (2 cos<sup>2</sup>A - 1) (4 cos<sup>3</sup>A - 3 cosA) - 2 sinA cosA (3 sinA - 4 sin<sup>3</sup>A)</p> <p>= 8 cos<sup>5</sup>A - 6 cos<sup>3</sup>A - 4 cos<sup>3</sup>A + 3 cosA - 6 sin<sup>2</sup>A cosA + 8 sin<sup>4</sup>A cosA</p> <p>= 8 cos<sup>5</sup>A - 10 cos<sup>3</sup>A + 3 cosA - 6 (1 - cos<sup>2</sup>A) cosA + 8 (1 - cos<sup>2</sup>A)<sup>2</sup> cosA</p> <p>= 8 cos<sup>5</sup>A - 10 cos<sup>3</sup>A + 3 cosA - 6 cosA + 6 cos<sup>3</sup>A + 8 cosA (1 - 2 cos<sup>2</sup>A + cos<sup>4</sup>A)</p> <p>= 8 cos<sup>5</sup>A - 4 cos<sup>3</sup>A - 3 cosA + 8 cosA - 16 cos<sup>3</sup>A + 8 cos<sup>5</sup>A</p> <p>=16 cos<sup>5</sup>A - 20 cos<sup>3</sup>A + 5 cosA</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q28:

Prove that:

tan (\(\frac {\pi}{4} + A\)) + tan (\(\frac {\pi}{4} - A\)) = 2 sec 2A


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=tan (\(\frac {\pi}{4} + A\)) + tan(\(\frac {\pi}{4} -A\))</p> <p>= \(\frac {tan \frac {\pi}{4} + tanA}{1 - tan {\frac {\pi}{4}} tanA}\) +\(\frac {tan \frac {\pi}{4} -tanA}{1 +tan {\frac {\pi}{4}} tanA}\)</p> <p>= \(\frac {1 + tanA}{1 - 1 &times; tanA}\) + \(\frac {1 -tanA}{1 +1 &times; tanA}\)</p> <p>= \(\frac {(1 + tanA)^2 + (1 - tan A)^2}{(1 - tanA) (1 + tanA)}\)</p> <p>= \(\frac {1 + 2 tanA + tan^2A + 1 - 2 tanA + tan^2A}{1 - tan^2A}\)</p> <p>= \(\frac {2 + 2 tan^2A}{1 - tan^A}\)</p> <p>= \(\frac {2 (1 + tan^2A)}{1 - tan^2A}\)</p> <p>= \(\frac 2{\frac {1 - tan^2A}{1 + tan^2A}}\)</p> <p>= \(\frac 2{cos 2A}\)</p> <p>= 2 sec 2A</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q29:

If tan\(\theta\) = \(\frac 56\) and tan\(\beta\) = \(\frac 1{11}\), show that:

(\(\theta\) + \(\beta\)) = \(\frac {\pi^c}{4}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>tan\(\theta\) = \(\frac 56\) and tan\(\beta\) = \(\frac 1{11}\)</p> <p>tan (\(\theta\) + \(\beta\)) = \(\frac {tan \theta + tan \beta}{1 - tan\theta tan\beta}\)</p> <p>or,tan (\(\theta\) + \(\beta\)) = \(\frac {\frac 56 + \frac 1{11}}{1 - \frac 56 &times; \frac 1{11}}\)</p> <p>or, tan (\(\theta\) + \(\beta\)) = \(\frac {\frac {5 &times; 11 + 1 &times; 6}{66}}{\frac {66 - 5}{66}}\)</p> <p>or,tan (\(\theta\) + \(\beta\)) = \(\frac {55 + 6}{66}\)&times; \(\frac {66}{61}\)</p> <p>or,tan (\(\theta\) + \(\beta\)) = \(\frac {61}{66}\)&times; \(\frac {66}{61}\)</p> <p>or,tan (\(\theta\) + \(\beta\)) = 1</p> <p>or,tan (\(\theta\) + \(\beta\)) = tan 45&deg;</p> <p>or,tan (\(\theta\) + \(\beta\)) = tan\(\frac {\pi^c}{4}\)</p> <p>&there4; (\(\theta\) + \(\beta\)) =\(\frac {\pi^c}{4}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q30:

Prove that:

cos6\(\theta\) + sin6\(\theta\) = \(\frac 14\)(1 + 3 cos2 2\(\theta\))


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>6</sup>\(\theta\) + sin<sup>6</sup>\(\theta\)</p> <p>= (cos<sup>2</sup>\(\theta\))<sup>3</sup> + (sin<sup>2</sup>\(\theta\))<sup>3</sup></p> <p>= (cos<sup>2</sup>\(\theta\) + sin<sup>2</sup>\(\theta\)) (cos<sup>4</sup>\(\theta\) - cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\) + sin<sup>4</sup>\(\theta\))</p> <p>= {(cos<sup>2</sup>\(\theta\))<sup>2</sup> - cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\) + (sin<sup>2</sup>\(\theta\))<sup>2</sup>}</p> <p>= {(cos<sup>2</sup>\(\theta\) + sin<sup>2</sup>\(\theta\))<sup>2</sup> - 2 cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\) - cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\)}</p> <p>= 1 - 3 sin<sup>2</sup>\(\theta\) cos<sup>2</sup>\(\theta\)</p> <p>= 1 - 3 . \(\frac 44\) (sin<sup>2</sup>\(\theta\) cos<sup>2</sup>\(\theta\))</p> <p>= 1 - \(\frac 34\) (4 sin<sup>2</sup>\(\theta\) cos<sup>2</sup>\(\theta\))</p> <p>= 1 - \(\frac 34\) (2 sin\(\theta\) cos\(\theta\))<sup>2</sup></p> <p>= 1 - \(\frac 34\) (sin 2\(\theta\))<sup>2</sup></p> <p>= 1 - \(\frac 34\) (sin<sup>2</sup>2\(\theta\))</p> <p>= 1 - \(\frac 34\) (1 - cos<sup>2</sup>2\(\theta\))</p> <p>= \(\frac {4 - 3 + 3 cos^22\theta}{4}\)</p> <p>= \(\frac {1 + 3 cos^22\theta}{4}\)</p> <p>= \(\frac 14\) (1 + 3 cos<sup>2</sup>2\(\theta\))</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q31:

Prove that:

\(\frac {2 cos 8\theta + 1}{2 cos\theta + 1}\) = (2 cos\(\theta\) - 1) (2 cos 2\(\theta\) - 1) (2 cos 4\(\theta\) - 1)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {2 cos 8\theta + 1}{2 cos\theta + 1}\)</p> <p>=\(\frac {2 cos 2 &times; 4\theta + 1}{2 cos\theta + 1}\)</p> <p>=\(\frac {2 (2cos^2 4\theta - 1) + 1}{2cos\theta + 1}\)</p> <p>=\(\frac {4 cos^2 4\theta -2 + 1}{2cos\theta + 1}\)</p> <p>=\(\frac {4 cos^2 4\theta - 1}{2cos\theta + 1}\)</p> <p>=\(\frac {(2cos 4\theta)^2 - (1)^2}{2cos\theta + 1}\)</p> <p>=\(\frac {(2 cos 4\theta + 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {(2 cos 2 &times; 2\theta + 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {[2 (2cos^2\theta - 1) + 1](2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {(4 cos^2\theta - 2 + 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {(4 cos^2\theta - 1)(2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {[(2 cos2\theta)^2 - (1)^2](2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {(2 cos 2\theta + 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {[2 &times; (2 cos^2\theta - 1) + 1] (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {(4 cos^2\theta - 2 + 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {(4 cos^2\theta - 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {[(2 cos\theta)^2 - (1)^2] (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=\(\frac {(2 cos\theta + 1) (2 cos \theta - 1) (2 cos 2\theta - 1) (2 cos 4\theta - 1)}{2cos\theta + 1}\)</p> <p>=(2 cos\(\theta\) - 1) (2 cos 2\(\theta\) - 1) (2 cos 4\(\theta\) - 1)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p> <p></p>

Q32:

Prove that:

cos2A + sin2A cos 2B = cos2B + sin2B cos 2A


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos<sup>2</sup>A + sin<sup>2</sup>A cos 2B</p> <p>= cos<sup>2</sup>A + sin<sup>2</sup>A(1 - 2 sin<sup>2</sup>B)</p> <p>= cos<sup>2</sup>A + sin<sup>2</sup>A - 2 sin<sup>2</sup>A sin<sup>2</sup>B</p> <p>= 1 - 2 sin<sup>2</sup>A sin<sup>2</sup>B</p> <p>= 1 - (1 - cos 2A) sin<sup>2</sup>B</p> <p>= 1 - sin<sup>2</sup>B + sin<sup>2</sup>B cos 2A</p> <p>= cos<sup>2</sup>B + sin<sup>2</sup>B cos 2A</p> <p>Hence, L.H.S. = R.H.S. Proved</p>

Q33:

Express cos 4\(\theta\) in terms of sin\(\theta\).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos 4\(\theta\)</p> <p>= cos 2 (2\(\theta\))</p> <p>= 1 - 2 sin<sup>2</sup> (2\(\theta\))</p> <p>= 1 - 2 (2sin\(\theta\) cos\(\theta\))<sup>2</sup></p> <p>= 1 - 2&times; 4 sin<sup>2</sup>\(\theta\) cos<sup>2</sup>\(\theta\)</p> <p>= 1 - 8 sin<sup>2</sup>\(\theta\) (1 - sin<sup>2</sup>\(\theta\))</p> <p>= 1 - 8 sin<sup>2</sup>\(\theta\) + 8 sin<sup>4</sup>\(\theta\) <sub>Ans</sub></p>

Q34:

If tan2\(\alpha\) = 1 + 2 tan2\(\beta\), show that:

cos 2\(\beta\) = 1 + 2 cos 2\(\alpha\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>tan<sup>2</sup>\(\alpha\) = 1 + 2 tan<sup>2</sup>\(\beta\)</p> <p>or, \(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) = 1 + 2 (\(\frac {1 - cos 2\beta}{1 + cos 2\beta})\)</p> <p>or,\(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) = \(\frac {1 + cos 2\beta + 2 - 2 cos 2\beta}{1 + cos 2\beta}\)</p> <p>or,\(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) = \(\frac {3 - cos 2\beta}{1 + cos 2\beta}\)</p> <p>or,\(\frac {1 - cos 2\alpha}{1 + cos 2\alpha}\) + 1 = \(\frac {3 - cos 2\beta}{1 + cos 2\beta}\) + 1</p> <p>or, \(\frac {1 - cos 2\alpha + 1 + cos 2\alpha}{1 + cos 2\alpha}\) = \(\frac {3 - cos 2\beta + 1 + cos 2\beta}{1 + cos 2\beta}\)</p> <p>or, \(\frac 2{1 + cos 2\alpha}\) = \(\frac 4{1 + cos 2\beta}\)</p> <p>or, 2 (1 + cos 2\(\beta\)) = 4 (1 + cos 2\(\alpha\))</p> <p>or, 2 + 2 cos 2\(\beta\) = 4 + 4 cos 2\(\alpha\)</p> <p>or, 2 cos 2\(\beta\) =4 + 4 cos 2\(\alpha\) - 2</p> <p>or,2 cos 2\(\beta\) = 2+ 4 cos 2\(\alpha\)</p> <p>or, cos 2\(\beta\) = \(\frac {2(1 + 2 cos 2\alpha)}{2}\)</p> <p>or,cos 2\(\beta\) =1 + 2 cos 2\(\alpha\)</p> <p>&there4; L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q35:

Show that:

tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + 8 cot 8\(\theta\) = cot\(\theta\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + 8 cot 8\(\theta\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac 8{tan 8\theta}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac 8{tan 2&sdot;4\theta}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac 8{\frac {2 tan 4\theta}{1 - tan^24\theta}}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + 4 tan 4\(\theta\) + \(\frac {8 (1 - tan^24\theta)}{2 tan 4\theta}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac {4 tan^24\theta + 4 (1 - tan^24\theta)}{tan 4\theta}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac {4 tan^24\theta + 4 - 4 tan^24\theta}{tan 4\theta}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac 4{tan 4\theta}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac 4{tan 2&sdot;2\theta}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac 4{\frac {2 tan 2\theta}{1 - tan^22\theta}}\)</p> <p>=tan\(\theta\) + 2 tan 2\(\theta\) + \(\frac {2 (1 - tan^2\theta)}{tan 2\theta}\)</p> <p>= tan\(\theta\) + \(\frac {2 tan^22\theta + 2 - 2 tan^22\theta}{tan 2\theta}\)</p> <p>= tan\(\theta\) + \(\frac 2{tan 2\theta}\)</p> <p>= tan\(\theta\) + \(\frac 2{\frac {2 tan\theta}{1 - tan^2\theta}}\)</p> <p>= tan\(\theta\) + \(\frac {1 - tan^2\theta}{tan\theta}\)</p> <p>= \(\frac {tan^2\theta + 1 - tan^2\theta}{tan\theta}\)</p> <p>= \(\frac 1{tan\theta}\)</p> <p>= cot\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>proved</sub></p>

Q36:

Show that:

cos 4x - cos 4y = 8 (cos2x - cos2y) (cos2x - sin2y)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>R.H.S.</p> <p>= 8 (cos<sup>2</sup>x - cos<sup>2</sup>y) (cos<sup>2</sup>x - sin<sup>2</sup>y)</p> <p>= 2 (2 cos<sup>2</sup>x - 2 cos<sup>2</sup>y) (2 cos<sup>2</sup>x - 2 sin<sup>2</sup>y)</p> <p>= 2 [1 + cos 2x - (2 + cos 2y)] [1 + cos 2x - (1 - cos 2y)]</p> <p>= 2 [1 + cos 2x - 2 - cos 2y] [1 + cos 2x - 1 + cos 2y]</p> <p>= 2 (cos 2x - cos 2y) (cos 2x - cos 2y)</p> <p>= 2 (cos<sup>2</sup>2x - cos<sup>2</sup>2y)</p> <p>= 2 cos<sup>2</sup>2x - 2 cos<sup>2</sup>2y</p> <p>= 1 + cos 4x - (1 + cos 4y)</p> <p>= 1 + cos 4x - 1 - cos 4y</p> <p>= cos 4x - cos 4y</p> <p>Hence, L.H.S. =R.H.S. <sub>Proved</sub></p>

Q37:

Show that:

sec x = \(\frac 2{\sqrt {2 + \sqrt {2 + 2 cos 4x}}}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>R.H.S.</p> <p>= \(\frac 2{\sqrt {2 + \sqrt {2 + 2 cos 4x}}}\)</p> <p>= \(\frac 2{\sqrt {2 + \sqrt {2 + 2 cos 2 &sdot;2x}}}\)</p> <p>=\(\frac 2{\sqrt {2 + \sqrt {2 (1 + cos 2 &sdot;2x)}}}\)</p> <p>=\(\frac 2{\sqrt {2 + \sqrt {2 &sdot; 2 cos^22x}}}\)</p> <p>= \(\frac 2{\sqrt {2 + 2 cos 2x}}\)</p> <p>=\(\frac 2{\sqrt {2 (1 + cos 2x)}}\)</p> <p>=\(\frac 2{\sqrt {2 &sdot; 2 cos^2x}}\)</p> <p>= \(\frac 2{2 cosx}\)</p> <p>= \(\frac 1{cosx}\)</p> <p>= sec x</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q38:

Prove that:

4 sin3\(\alpha\) ⋅ cos 3\(\alpha\) + 4 cos3\(\alpha\) ⋅ sin 3\(\alpha\) = 3 sin 4\(\alpha\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=4 sin<sup>3</sup>\(\alpha\)&sdot; cos 3\(\alpha\) + 4 cos<sup>3</sup>\(\alpha\) &sdot;sin 3\(\alpha\)</p> <p>= (3 sin\(\alpha\) - sin3\(\alpha\))&sdot; cos 3\(\alpha\) + (3 cos\(\alpha\) + cos 3\(\alpha\))&sdot; sin 3\(\alpha\)</p> <p>= 3 sin\(\alpha\) cos 3\(\alpha\) - sin 3\(\alpha\) cos 3\(\alpha\) + 3 cos\(\alpha\) sin 3\(\alpha\) + sin 3\(\alpha\) cos 3\(\alpha\)</p> <p>= 3 sin\(\alpha\) cos 3\(\alpha\) + 3 cos\(\alpha\) sin 3\(\alpha\)</p> <p>= 3 (sin\(\alpha\) cos 3\(\alpha\) + cos\(\alpha\) sin 3\(\alpha\))</p> <p>= 3 sin(\(\alpha\) + 3\(\alpha\))</p> <p>= 3 sin 4\(\alpha\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q39:

Prove that:

cos3\(\alpha\) . cos 3\(\alpha\) + sin3\(\alpha\) . sin 3\(\alpha\) = cos3 2\(\alpha\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>3</sup>\(\alpha\) . cos 3\(\alpha\) + sin<sup>3</sup>\(\alpha\) . sin 3\(\alpha\)</p> <p>= cos<sup>3</sup>\(\alpha\) (4 cos<sup>3</sup>\(\alpha\) - 3 cos\(\alpha\)) + sin<sup>3</sup>\(\alpha\) (3 sin\(\alpha\) - 4 sin<sup>3</sup>\(\alpha\))</p> <p>= 4 cos<sup>6</sup>\(\alpha\) - 3 cos<sup>4</sup>\(\alpha\) + 3 sin<sup>4</sup>\(\alpha\) - 4 sin<sup>6</sup>\(\alpha\)</p> <p>= 4 (cos<sup>6</sup>\(\alpha\) - sin<sup>6</sup>\(\alpha\)) - 3 (cos<sup>4</sup>\(\alpha\) - sin<sup>4</sup>\(\alpha\))</p> <p>= 4 {(cos<sup>2</sup>\(\alpha\))<sup>3</sup> - (sin<sup>2</sup>\(\alpha\))<sup>3</sup>} - 3{(cos<sup>2</sup>\(\alpha\))<sup>2</sup> - (sin<sup>2</sup>\(\alpha\))<sup>2</sup>}</p> <p>= 4 (cos<sup>2</sup>\(\alpha\) - sin<sup>2</sup>\(\alpha\)) (cos<sup>4</sup>\(\alpha\) + cos<sup>2</sup>\(\alpha\) sin<sup>2</sup>\(\alpha\) + sin<sup>4</sup>\(\alpha\)) - 3 (cos<sup>2</sup>\(\alpha\) +sin<sup>2</sup>\(\alpha\))(cos<sup>2</sup>\(\alpha\) - sin<sup>2</sup>\(\alpha\))</p> <p>= 4 cos 2\(\alpha\) {(cos<sup>2</sup>\(\alpha\))<sup>2</sup> + (sin<sup>2</sup>\(\alpha\))<sup>2</sup> + cos<sup>2</sup>\(\alpha\) sin<sup>2</sup>\(\alpha\)} - 3 cos 2\(\alpha\)</p> <p>= cos 2\(\alpha\) [4 {(cos<sup>2</sup>\(\alpha\) + sin<sup>2</sup>\(\alpha\))<sup>2</sup> - 2 cos<sup>2</sup>\(\alpha\) sin<sup>2</sup>\(\alpha\) + cos<sup>2</sup>\(\alpha\) sin<sup>2</sup>\(\alpha\)} - 3]</p> <p>= cos 2\(\alpha\) [4 - 4 cos<sup>2</sup>\(\alpha\) sin<sup>2</sup>\(\alpha\) - 3]</p> <p>= cos 2\(\alpha\) [1 - sin<sup>2</sup>2\(\alpha\)]</p> <p>= cos 2\(\alpha\)&sdot; cos<sup>2</sup>2\(\alpha\)</p> <p>= cos<sup>3</sup>2\(\alpha\)</p> <p>&there4; L.H.S. = R.H.S. <sub>Proved</sub></p>

Q40:

Prove that:

(2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1) (2 cos 2\(\theta\) - 1) = 2 (cos 4\(\theta\) + 1) 


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>R.H.S.</p> <p>=2 (cos 4\(\theta\) + 1)</p> <p>= 2 [cos 2. 2\(\theta\)] + 1</p> <p>= 2 [2 cos<sup>2</sup> 2\(\theta\) - 1] + 1</p> <p>= 4 cos<sup>2</sup> 2\(\theta\) - 2 + 1</p> <p>= 4 (2 cos<sup>2</sup>\(\theta\) - 1)<sup>2</sup> - 1</p> <p>= 4 (4 cos<sup>4</sup>\(\theta\) - 4 cos<sup>2</sup>\(\theta\) + 1) - 1</p> <p>= 16 cos<sup>4</sup>\(\theta\) - 16 cos<sup>2</sup>\(\theta\) + 4 - 1</p> <p>= 16 cos<sup>4</sup>\(\theta\) - 16 cos<sup>2</sup>\9\theta\) + 3</p> <p>= 16 cos<sup>4</sup>\(\theta\) - 12 cos<sup>2</sup>\(\theta\) - 4 cos<sup>2</sup>\(\theta\) + 3</p> <p>= 4 cos<sup>2</sup>\(\theta\) (4 cos<sup>2</sup>\(\theta\) - 3) - 1 (4 cos<sup>2</sup>\(\theta\) - 3)</p> <p>= (4 cos<sup>2</sup>\(\theta\) - 3) (4 cos<sup>2</sup>\(\theta\) - 1)</p> <p>=(4 cos<sup>2</sup>\(\theta\) - 2 - 1) [(2 cos\(\theta\))<sup>2</sup> - (1)<sup>2</sup>]</p> <p>= [2 (2 cos<sup>2</sup>\(\theta\) -1) - 1] (2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1)</p> <p>= (2 cos 2\(\theta\) - 1)(2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1)</p> <p>=(2 cos\(\theta\) + 1) (2 cos\(\theta\) - 1)(2 cos 2\(\theta\) - 1)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q41:

Prove that:

2 (cos6x + sin6x) - 3 (cos4x + sin4x) + 1 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=2 (cos<sup>6</sup>x + sin<sup>6</sup>x) - 3 (cos<sup>4</sup>x + sin<sup>4</sup>x) + 1</p> <p>= 2 [(cos<sup>2</sup>x)<sup>3</sup> + (sin<sup>2</sup>x)<sup>3</sup>] - 3 [(cos<sup>2</sup>x)<sup>2</sup> + (sin<sup>2</sup>x)<sup>2</sup>] + 1</p> <p>= 2 (cos<sup>2</sup>x + sin<sup>2</sup>x) [(cos<sup>2</sup>x)<sup>2</sup> - cos<sup>2</sup>x sin<sup>2</sup>x + (sin<sup>2</sup>x)<sup>2</sup>] - 3 [(cos<sup>2</sup>x + sin<sup>2</sup>x)<sup>2</sup> - 2 cos<sup>2</sup>x sin<sup>2</sup>x] + 1</p> <p>= 2&times; 1 [(cos<sup>2</sup>x + sin<sup>2</sup>x)<sup>2</sup> - 2 cos<sup>2</sup>x sin<sup>2</sup>x - cos<sup>2</sup>x sin<sup>2</sup>x] - 3 [1 - 2 sin<sup>2</sup>x cos<sup>2</sup>x] + 1</p> <p>= 2 (1 - 3 cos<sup>2</sup>x sin<sup>2</sup>x) - 3 + 6 cos<sup>2</sup>x sin<sup>2</sup>x + 1</p> <p>= 2 - 6 cos<sup>2</sup>x sin<sup>2</sup>x - 2 +6 cos<sup>2</sup>x sin<sup>2</sup>x</p> <p>= 0</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q42:

Prove that:

\(\frac {sin^2A - sin^2B}{sinA cosA - sinB cosB}\) = tan (A + B)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>R.H.S.</p> <p>= tan (A + B)</p> <p>= \(\frac {sin (A + B)}{cos (A + B)}\)&times; \(\frac {sin (A - B)}{sin (A - B)}\)</p> <p>= \(\frac {(sinA cosB + cosA sinB) (sinA cosB - cosA sinB)}{(cosA cosB - sinA sinB) (sinA cosB - cosA sinB)}\)</p> <p>= \(\frac {sin^2A cos^2B - cos^2A sin^2B}{sinA cosA cos^2B - sinB cosB cos^2A - sinB cosB sin^2A - cosA sinA sin^2B}\)</p> <p>= \(\frac {sin^2A (1 - sin^2B) - (1 - sin^2A) sin^2B}{sinA cosA (cos^2B + sin^2B) - sinB cosB (cos^2A + sin^2A)}\)</p> <p>= \(\frac {sin^2A - sin^2A sin^2B - sin^2B + sin^2A sin^2B}{sinA cosA . 1 - sinB cosB . 1}\)</p> <p>=\(\frac {sin^2A - sin^2B}{sinA cosA - sinB cosB}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q43:

Prove that:

cos6\(\theta\) - sin6\(\theta\) = cos 2\(\theta\) (1 - \(\frac 14\) sin2 2\(\theta\))


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>6</sup>\(\theta\) - sin<sup>6</sup>\(\theta\)</p> <p>= (cos<sup>2</sup>\(\theta\))<sup>3</sup>- (sin<sup>2</sup>\(\theta\))<sup>3</sup></p> <p>= (cos<sup>2</sup>\(\theta\) - sin<sup>2</sup>\(\theta\)) [(cos<sup>2</sup>\(\theta\))<sup>2</sup> + cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\) + (sin<sup>2</sup>\(\theta\))<sup>2</sup>]</p> <p>= cos 2\(\theta\) [(cos<sup>2</sup>\(\theta\))<sup>2</sup> + 2 cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\) + (sin<sup>2</sup>\(\theta\))<sup>2</sup> - cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\)]</p> <p>= cos 2\(\theta\) [(cos<sup>2</sup>\(\theta\) + sin<sup>2</sup>\(\theta\))<sup>2</sup> - \(\frac 14\) &times; 4 cos<sup>2</sup>\(\theta\) sin<sup>2</sup>\(\theta\)]</p> <p>= cos 2\(\theta\) [(1)<sup>2</sup> - \(\frac 14\) (2 sin\(\theta\) cos\(\theta\))<sup>2</sup>]</p> <p>= cos 2\(\theta\) [1 - \(\frac 14\) (sin 2\(\theta\))<sup>2</sup>]</p> <p>=cos 2\(\theta\) (1 - \(\frac 14\) sin<sup>2</sup> 2\(\theta\))</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q44:

$$ \frac{1-2sinA.cosA}{2}=sin^2(\frac{\pi^c}{4}-A)$$


Type: Short Difficulty: Easy

Q45:

$$ \frac{2sin\:\beta=sin2\beta}{2sin\beta-sin2\beta}=cot^2 \: \frac{\beta}{2}$$


Type: Short Difficulty: Easy

Q46:

$$ \frac{cos\; \alpha}{1-sin\alpha}=\frac{1+tan\: \alpha/2}{1-tan\:\alpha/2}$$


Type: Short Difficulty: Easy

Q47:

$$cot\:A=\frac{1}{2} (cot\frac{A}{2}-tan\frac{A}{2}$$


Type: Short Difficulty: Easy

Q48:

$$cos^2(\frac{\pi}{4}-\frac{\theta}{4})-sin^2(\frac{\pi}{4}-\frac{\theta}{4})=sin\frac{\theta}{2}$$


Type: Short Difficulty: Easy

Q49:

$$ \frac{1-tan^2\:(\frac{\pi}{4}-\frac{\theta}{4}}{1+tan^2(\frac{\pi}{4}-\frac{\theta}{4})}=sin\frac{\theta}{2}$$


Type: Short Difficulty: Easy

Q50:

$$\frac{sin\frac{\theta}{2}-\sqrt{1+ sin\theta}}{\cos\frac{\theta}{2}-\sqrt{1+sin\theta}}=cot\frac{\theta}{2}$$


Type: Short Difficulty: Easy

Q51:

$$\frac{\sin\frac{A}{2}+sinA}{1+cos\frac{A}{2}+cosA}=\tan\frac{A}{2}$$


Type: Short Difficulty: Easy

Q52:

$$\tan\frac{\theta}{2}=\frac{1+sin\theta-cos\theta}{1+sin\theta+cos\theta}$$


Type: Short Difficulty: Easy

Q53:

$$\frac{1+cos\theta+sin\theta}{1-cos\theta+sin\theta}=cot\frac{\theta}{2}$$


Type: Short Difficulty: Easy

Q54:

$$\frac{1+cosA+sinA}{1-cosA+sinA}=\frac{1}{tan\frac{A}{2}}$$


Type: Short Difficulty: Easy

Q55:

$$\frac{1+cos\theta}{sin\theta}=\cot\frac{\theta}{2}$$


Type: Short Difficulty: Easy

Q56:

$$\cot\frac{A}{2}-tan\frac{A}{2}=2\:cot\:A$$


Type: Short Difficulty: Easy

Videos

How To Derive The Formula For Cos3A - Maths / Trigonometry
Derive The Formulae For SinA, CosA, TanA and CotA / Multiple Angles / Maths Trigonometry
How to Derive The Formula For Sin 2A - Maths / Trigonometry
Importance of the Office

Importance of the Office

The office of an organization is the most important unit. It is regarded as the mainspring of a watch and steering of a car. It is equally important to a government unit, the business organization as well as service motive organization. It essential to perform a number of administrative as well as clerical functions in the process of achieving the organizational objectives. There is some importance of the office, they are:

  1. Planning and decision-making center: The office formulates various types of plans and policies regarding production, sales, cost, profit, and loss. It makes different types of the decision like changing the amount of capital, objectives, rules and regulations of the office.
  2. Coordinating and communicating center: The office is important due to its coordination and communication functions. It links the activities of different persons and department and directs them towards the attainment of organizational goals. It passes useful information to the staff and departments inside the organization and to the concerned parties outside the organization as per their requirements.
  3. Controlling center: The office is regarded as the controlling center of the organization. It supervises and evaluates the performance of different staff and departments. It compares the actual performance of different staff and departments with the standard performance and takes corrective action to minimize the variations in future.
  4. Public relation center: The office maintains good public relation for operating its business successfully and increasing the goodwill of the organization. It provides accurate and reliable to all the concerned parties as per their requirements. It provides better services to customers, suppliers, lenders, owners, competitors and government in order to maintain good relation with them.
  5. Proof of existence: The office is the proof of the existence of an organization. It gives the identity of the organization. It gives evidence that the organization is operating its business in the society.
  6. Record center: The office is considered as a storehouse of information. It records important and useful information for future reference. It maintains a systematic record of information and documents in files, books of accounts, computer, etc.
  7. Service center: The office is regarded as a service center of an organization. It provides necessary materials and information to the employees and departments increase the efficiency of employees and department.

Formation of Office

Every organization forms an office to perform its activities in an efficient manner for achieving the organizational goals. Nature, size and duration of the office depend upon the volume of activities and objectives of the organization. The organization which has limited human and other resources forms a small sized office. Similarly, the organization which has the objectives of producing and distributing good and services over a long period of time from a permanent office.

  • Permanent office

    A permanent office is also known as the long term office. It is established for the production and distribution of goods and services over a long period of time. Its activities are not time bounded and its objectives are not sought within the specified time frame. Usually, the size of the permanent office is large with a large number of employees, a huge amount of capital and assets. Its files and transactions are voluminous. Ministries, departments, public enterprises, joint stock company, hospital, school, etc. from the permanent offices for operating their activities.

  • Temporary office

    The temporary office is also known as short term office. It is established with the objectives of producing and distributing goods and services over a short period of time or completing a particular job within a specific number of employees, a small amount of capital and assets. Its transactions are limited. Such office can be as follows:

    1. Temporary office for completing a particular job: It is such type of temporary office which is established for the completion of a specific job. After the completion of such specified job, the office is automatically closed. The office formed for constructing building, canal, road, bridge is some examples of the temporary office.
    2. Temporary office for a specific period: It is such type of temporary office which is established for the specific period of time. After the expiry of such specific duration, the office is automatically closed. Hence, such office exists till the period exists. The offices are formed for conducting seminar; workshop and training are some of the examples of such temporary office. The office of different commissions established for investing and reporting about different incidents within specified time frame are other examples of such office.

A temporary office is one which is completing a particular job or producing and distributing goods and services for a specific period of time.

Lesson

Office

Subject

Accountancy

Grade

Grade 9

Recent Notes

No recent notes.

Related Notes

No related notes.