Principle of Calorimetry and Newton’s Law of Cooling
This note provides us an information about Principle of Calorimetry and Newton’s Law of Cooling with verification . The specific capacity of the solid is measured by the different method like mixture .Newton’s law of cooling can be used to measure the specific heat capacity of a liquid. It is based on the principle that when the two liquids are cooled under identical conditions, their rates of cooling are equal.
Summary
This note provides us an information about Principle of Calorimetry and Newton’s Law of Cooling with verification . The specific capacity of the solid is measured by the different method like mixture .Newton’s law of cooling can be used to measure the specific heat capacity of a liquid. It is based on the principle that when the two liquids are cooled under identical conditions, their rates of cooling are equal.
Things to Remember
A principle of calorimetry states that if there is no loss of heat in surrounding the total heat loss by hot body equals to total heat gained by a cold body.
Then the rate of heat lost by a temperature of the liquid is directly proportional to the difference in temperature of the surrounding.
Newton’s law of cooling can be used to measure the specific heat capacity of a liquid.
MCQs
No MCQs found.
Subjective Questions
Q1:
From the poem find the words which mean:
morning
land
that can be easily damaged
scene
tired
look for
a place where grain is stored
happiness
Type: Very_short Difficulty: Easy
Q2:
Choose the best answer:
Who gives us golden grains?
a) earth
b) the farmer
c) the mankind
Type: Very_short Difficulty: Easy
Q3:
Choose the best answer:
The pronoun 'we' in the first line refers to:
a) the poet
b) the readers
c) the farmer
Type: Very_short Difficulty: Easy
Q4:
Choose the best answer:
What's enough to make them happy?
a) golden grain
b) heaven
c) their children at home
Type: Very_short Difficulty: Easy
Q5:
Choose the best answer:
Who do not seek for the pleasure of heaven?
a) the poet
b) the farmer
c) sons and daughters
Type: Very_short Difficulty: Easy
Q6:
Answer the following questions:
Who rise in the early morning and why?
Type: Short Difficulty: Easy
Q7:
Answer the following questions:
What do they watch for hours and why?
Type: Short Difficulty: Easy
Q8:
Answer the following questions:
Why don't they seek 'The Pleasure of Heaven'?
Type: Short Difficulty: Easy
Videos
No videos found.

Principle of Calorimetry and Newton’s Law of Cooling
Principle of Calorimetry
A principle of calorimetry states that if there is no loss of heat in surrounding the total heat lost by hot body equal to the total heat gained by a cold body.
i.e. heat loss = heat gain
Specific Heat Capacity of Solid by the Method of Mixture

Following are the steps to determine the specific heat capacity of solid from the method of a mixture.
- The solid is first weighted and then is heated such as in a steam chamber of Regnant's apparatus.
- The steam from the boiler is passed through the space between the two walls of the chamber through inlet I and outlet O. A thermometer T1 are inserted to measure the temperature of solid as in the figure.
- A calorimeter and stirrer are weighted and half of its volume is filled with water. Then it is again weighted to know the mass of water.
- The calorimeter is placed inside the wooden box by surrounding the calorimeter with woolen clothes to avoid the heat loss.
- The temperature of a calorimeter and its content is measured by the thermometer, T2.
- When a solid gains a constant temperature in the steam chamber, the calorimeter is brought below the chamber, its lid is opened and hot solid is put carefully in the calorimeter.
- The mixture is then stirred gently until the temperature of the mixture reaches a constant value.
- The mass of calorimeter with the stirrer, the mass of water and initial temperature are noted.
- After transferring solid into the calorimeter note the final temperature.
The specific heat of solid is calculated as follows:
m = mass of solid
m1 = mass of calorimeter and stirrer
m2 = mass of calorimeter, stirrer and water
mw = m2-m1 = mass of water
θ1= temperature of solid
θ2= temperature of calorimeter, stirrer and water
θ3= final temperature of mixture
sw = specific heat capacity of water
sc = specific heat capacity of calorimeter and stirrer
s = specific heat capacity of solid
heat gain by solid\( = ms(\theta_1 - \theta )\)
heat gained by water and calorimeter\( = m_ws_w(\theta - \theta_2 ) +m_1s_c(\theta - \theta_2 ) \)
$$= (m_ws_w + m_1s_c)(\theta - \theta_2 )$$
From the principle of calorimetry,
$$ \text {heat gain}= \text {heat loss} $$
$$ms(\theta_1 - \theta ) = (m_ws_w + m_1s_c)(\theta - \theta_2 )$$
$$\therefore s = \frac{(m_ws_w + m_1s_c)(\theta - \theta_2 )}{ms(\theta_1 - \theta )}$$
Newton’s Law of Cooling
When a liquid is heated of higher temperature and placed to cool. Then the rate of heat lost by a temperature of the liquid is directly proportional to the difference in temperature of the surrounding.
Let the liquid having mass’ and specific heat capacity ‘s’ is heated to the temperature and placed to cool. Then from Newton’s law of cooling
Rate of heat lost by the liquid \(\frac{dQ}{dt}∝(\theta-\theta_s )\)
$$or,\frac{dQ}{dt}= -K(\theta-\theta_s )$$
Where K is proportionality constant. Its value depends on upon the nature of liquid and its surface area exposed to the surrounding. The negative sign indicates that the quantity of heat lost by liquid goes on decreasing with time.
Verification of Newton’s Law of Cooling
Consider a liquid of mass ‘m’ and specific heat capacity ‘s’ when ‘dQ’ quantity of heat is supplied to that liquid than the small change in the temperature \(‘d\theta’ \) is increased.
Then we can write,
$$dQ=msd\theta$$
dividing both sides by dt
$$\frac{dQ}{dt} = \frac{msd\theta}{dt}\dots(i)$$
From newton’s law of cooling
$$-K(\theta - \theta_s ) =\frac{dQ}{dt}\dots(ii)$$
From equation (i) and (ii)
$$-K(\theta - \theta_s ) =ms\frac{d\theta}{dt}$$
$$\frac {d\theta}{\theta-\theta_s} =-\frac{K}{ms}dt$$
Integrating on both sides,
$$\int\frac {d\theta}{\theta-\theta_s}=\int\frac{-K}{ms} dt$$
$$log(\theta - \theta_s )=\frac{-K}{ms} t + C\dots(iii)$$
Where ‘C ’ is the constant of integration. The eq.(iii) is an equation of straight line which verifies the Newton's law of cooling.
Specific Heat of a Liquid by the Method of Cooling

Newton’s law of cooling can be used to measure the specific heat capacity of a liquid. It is based on the principle that when the two liquids are cooled under identical conditions, their rates of cooling are equal.
Following are the steps to determine specific heat capacity of solid from method of cooling:
- Take two calorimeters A and B of the same materials having masses m1 and m2 respectively.
- Fill the calorimeter A with some water having mass M1 and calorimeter B with an equal volume of experimental liquid of mass M2.
- Now place two calorimeters inside the constant temperature enclosure as shown in the figure.
- The initial temperature is noted.
- The two calorimeters are provided with identical conditions.
If t1 and t2 be the time taken by water and liquid to cool from to,
Heat lost by the calorimeter \(A = m_1s(\theta_1 - \theta_2 )\)
and Heat lost by the water in calorimeter \(A = m_1s_1(\theta_1 - \theta_2 )\)
where s1 is the specific heat capacity of water. Therefore, total heat lost by the calorimeter A and water in cooling from to.
$$ = m_1s(\theta_1 - \theta_2 ) + m_1s_1(\theta_1 - \theta_2 ) $$
$$ = (m_1s + m_1s_1)(\theta_1 - \theta_2 )\dots(i) $$
The rate of cooling of water and calorimeter
$$ = \frac{(m_1s + M_1s_1)}{t_1}(\theta_1 - \theta_2 )\dots(ii) $$
The rate of cooling of liquid and calorimeter B
$$ = \frac{(m_1s + M_2s_1)}{t_2}(\theta_1 - \theta_2 )\dots(iii) $$
Where sl is the specific heat capacity of the liquid
From the law of cooling
Rate of cooling of water and calorimeter A = Rate of cooling of liquid and calorimeter B
$$ \text{or, }\frac{(m_1s + M_1s_1)}{t_1}(\theta_1 - \theta_2 ) =\frac{(m_1s + M_2s_1)}{t_2}(\theta_1 - \theta_2 )$$
$$ \text{or, }\frac{(m_1s + M_1s_1)}{t_1} =\frac{(m_1s + M_2s_1)}{t_2}$$
$$ \text{or, }\frac{(m_1s + M_1s_1)}{m_2} \times \frac{t_2}{t_1} - \frac{M_2}{m_2} s_1\dots(iv) $$
In CGS system, s1 = 1calg-1-1. Equation (iv) can be written as
$$ \text{or, }\frac{(m_1s + M_1)}{m_2} \times \frac{t_2}{t_1} - \frac{M_2}{m_2} $$
this equation is used to determine the specific heat capacity of the liquid.
Lesson
Calorimetry
Subject
Physics
Grade
Grade 11
Recent Notes
No recent notes.
Related Notes
No related notes.