Chromatic Aberrations in Lenses

This note provides us an information about chromatic aberrations in lenses .The inability of a lens to focus all colours of light at a single point is called chromatic aberration or axial or longitudinal chromatic aberration. It is measured by the difference in focal lengths between red and violet colours.

Summary

This note provides us an information about chromatic aberrations in lenses .The inability of a lens to focus all colours of light at a single point is called chromatic aberration or axial or longitudinal chromatic aberration. It is measured by the difference in focal lengths between red and violet colours.

Things to Remember

  • The combination of two thin lenses in which their combination is free from chromatic aberration is called the achromatic combination of lenses
  • \begin{align*} \text {Chromatic aberration} &= f_r – f_v \\ \end{align*}
  • For lens L, focal length of mean colour is

    \begin{align*} \frac 1f &= (\mu – 1) \left ( \frac {1}{R_1} + \frac {1}{R_2} \right ) \\ \text {or,} \: \frac {1}{R_1} + \frac {1}{R_2} &= \frac {1}{f(\mu -1)} \\ \end{align*}

  •  

MCQs

No MCQs found.

Subjective Questions

Q1:

Define medical sociology


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>It is a specialization within the field of sociology. Its main interest is in the study of health , health behavior and medical institutions. It is defined as " Professional endeavor devoted to social epidemiology , the study of culture factors and social relationship in connection with illness and the social principles in medical organization and treatment.</p>

Q2:

Define society


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>Society is simply a long-standing group of people sharing cultural aspects such as language ,dress ,norms of behavior and artistic forms. All animal and human being are known as national one. Human thinks something each and every time . He or she can't interact with other for fulfilling of some kind of need or interest such interest or desire interacting with other brings close to each other and establish some kind of relationship. This relationship expands when human beings continue keeping in contact with other such a net of relationship is called society<strong>.</strong></p>

Q3:

Define sociology


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>Etymologically, the term sociology is the combination of two words one latin word 'society' and another greek word 'logos' in which society means society and logos mean a study of science. In this way, etymological meaning of sociology is the study of society or science of society. &nbsp;Sociology is also the study of human social life ,group,and society.</p>

Q4:

Define socialization


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>Socialization is a process by which the members of society learn the attitude, believe and values of one's own culture. In order word , socialization is the process by which an individual gradually acquires and become members of social groups. Socialization plays an important role in the growth and development of a child. There are three essential elements of socialization: language, human interaction and love and affection<strong>.</strong></p>

Videos

No videos found.

Chromatic Aberrations in Lenses

Chromatic Aberrations in Lenses

Chromatic Aberrations in Lenses

The inability of a lens to focus all colours of light at a single point is called chromatic aberration or axial or longitudinal chromatic aberration. It is measured by the difference in focal lengths between red and violet colours.

fv

\begin{align*} \text {Chromatic aberration} &= f_r – f_v \\ \end{align*}

Using lens maker’s formula, for mean colour of light, we have

\begin{align*} \frac 1f &= (\mu – 1) \left ( \frac {1}{R_1} + \frac {1}{R_2} \right ) \\ \text {or,} \: \frac {1}{R_1} + \frac {1}{R_2} &= \frac {1}{f(\mu -1)} \dots (i) \\ \end{align*}

Where f is focal length of mean colour, µ is refractive index of mean colour, R1 and R2 are radii of curvature of two lens surfaces.

For violet colour, we have

\begin{align*} \frac 1f &= (\mu _v – 1) \left ( \frac {1}{R_1} + \frac {1}{R_2} \right ) \\ \text {or,} \: \frac {1}{f_v} &= (\mu _v – 1) \frac {1}{f(\mu -1)}\\ \text {or,} \: \frac {1}{f_v} &= \frac {u_v - 1}{f(\mu -1)} \dots (ii) \\ \text {where} \: \mu _v \end{align*}is refractive index of violet colour. Similarly for red colour, we have \begin{align*}\frac {1}{f_r} &=\frac {\mu_v - 1}{f(\mu -1)} \dots (iii)\\ \end{align*}

Here \(\mu _r \)is refractive index of red colour. Subtracting equation (iii)from equation (ii) we get \begin{align*}\frac {1}{f_v} - \frac {1}{f_r} &= \frac {\mu_v - 1}{f(\mu -1)} - \frac {\mu_r - 1}{f(\mu -1)}\\ \text {or,} \: \frac {f_r – f_v}{f_v . f_r} &= \frac { u_v – 1 - \mu _r + 1}{f(\mu -1)} \\ \text {or,} \: f_f – f_v &= \frac {(\mu _v -\mu_r) f_vf_r}{f(\mu – 1)} \dots (iv) \\ \end{align*}

j

Achromatic Combination of Lenses

The combination of two thin lenses in which their combination is free from chromatic aberration is called the achromatic combination of lenses.

Consider two thin lenses l and L’ of dispersive power \(\omega \text {and} \omega ‘\) respectively placed in contact with each other as shown in the figure. Let \(\mu, \: \mu \text {and}\: \mu _r\) are the refractive indices of L for violet, mean and red colour respectively, and fv , f and fr are the focal lengths of respective colours. Similarly \(\mu, \: \mu \text {and}\: \mu _r ; f_v’, f’, f_r’ \) are corresponding quantities of L’.

For lens L, focal length of mean colour is

\begin{align*} \frac 1f &= (\mu – 1) \left ( \frac {1}{R_1} + \frac {1}{R_2} \right ) \\ \text {or,} \: \frac {1}{R_1} + \frac {1}{R_2} &= \frac {1}{f(\mu -1)} \\ \end{align*}

where R1 and R2 are radii of curvature of two lens surfaces. Focal length of lens L for violet colour is

\begin{align*} \frac 1f_v &= (\mu _v – 1) \left ( \frac {1}{R_1} + \frac {1}{R_2} \right ) \\\text {or,} \: \frac {1}{f_v} &= \frac {\mu_v - 1}{f(\mu -1)} \dots (i) \\ \end{align*}Similarly, focal length of lens L’ for violet colour\begin{align*} \frac {1}{f_v’} &= \frac {\mu_v’ - 1}{f’(\mu’ -1)} \dots (ii) \\ \text {If} \: F_v \end{align*}is the combined focal length of two lenses for violet colour, then \begin{align*}\frac {1}{F_v} &= \frac {1}{f_v} + \frac {1}{f_v’} \dots (iii) \\ \frac {1}{F_v} &= \frac {\mu_v - 1}{f(\mu -1)} + \frac {\mu_v’ - 1}{f(\mu ‘-1)} \dots (iv) \\ \end{align*}In the same way for red colour,\begin{align*}\frac {1}{F_r} &= \frac {\mu_r - 1}{f(\mu -1)} + \frac {\mu_r’ - 1}{f(\mu ‘-1)} \dots (v)\\ \end{align*}

\begin{align*} \text {For achromatic combination, we have} \\ F_r &= F_v \\ \text {or,} \: \frac {1}{F_v} &= \frac {1}{F_r} \\ \text {or,} \: \frac {\mu_v - 1}{f(\mu -1)} + \frac {\mu_v’ - 1}{f(\mu ‘-1)} &= \frac {\mu_r - 1}{f(\mu -1)} + \frac {\mu_r’ - 1}{f(\mu ‘-1)} \\ \text {or,} \: \frac {\mu_v - 1}{f(\mu -1)} - \frac {\mu_r - 1}{f(\mu -1)} &= \frac {\mu_r’ - 1}{f(\mu’ -1)} - \frac {\mu_v’ - 1}{f(\mu ‘-1)} \\ \text {or,} \: \frac {\mu _v – 1 - \mu _r + 1}{f(\mu – 1)} &= \frac {\mu _v’ – 1 - \mu _r’ + 1}{f(\mu’ – 1)} \\ \text {or,} \: \frac {\mu_v - \mu_r}{f(\mu -1)} &= \frac {\mu_v’ - \mu_r’}{f(\mu ‘-1)} \\ \text {or,} \: \frac {\omega }{f} &= - \frac {\omega ‘}{f} \\ \text {where} \: \frac {\mu_v - \mu_r}{f(\mu -1)} = \omega \: \text {and} \: \frac {\mu_v’ - \mu_r’}{f(\mu ‘-1)} = \omega ‘\\ \therefore \frac {\omega }{f} + \frac {\omega ‘}{f} &= 0 \\ \end{align*}

This is the condition for achromatic combination of two lenses.

Lesson

Dispersion of Light

Subject

Physics

Grade

Grade 11

Recent Notes

No recent notes.

Related Notes

No related notes.