Electric Power Consumption

To calculate total power consumption of a home, we need to know the power of each equipment, number of equipments and time they run. This note explains about the electric power consumption in our house.

Summary

To calculate total power consumption of a home, we need to know the power of each equipment, number of equipments and time they run. This note explains about the electric power consumption in our house.

Things to Remember

  • Power Consumption = Power consumed by appliance x number of appliance x time operating
  • To calculate total power consumption of a home, we need to know the power of each equipment, number of equipments and time they run. 
  • Meters measure electricity on kilowatt-hour (KWH).

MCQs

No MCQs found.

Subjective Questions

Q1:

If tan\(\frac {\theta}{2}\) = \(\frac 34\), prove that:

cos\(\theta\) = \(\frac 7{25}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>tan\(\frac {\theta}{2}\) = \(\frac 34\)</p> <p>L.H.S.</p> <p>= cos\(\theta\)</p> <p>= \(\frac {1 - tan^2\frac {\theta}2}{1 + tan^2\frac {\theta}2}\)</p> <p>= \(\frac {1 - (\frac 34)^2}{1 + (\frac 34)^2}\)</p> <p>= \(\frac {1 - \frac 9{16}}{1 + \frac 9{16}}\)</p> <p>= \(\frac {\frac {16 - 9}{16}}{\frac {16 + 9}{16}}\)</p> <p>= \(\frac 7{16}\)&times; \(\frac {16}{25}\)</p> <p>= \(\frac 7{25}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q2:

If cos\(\frac {\theta}{2}\) = \(\frac 23\), prove that:

cos\(\theta\) = \(\frac {-22}{27}\) 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos\(\frac {\theta}{2}\) = \(\frac 23\)</p> <p>L.H.S.</p> <p>=cos\(\theta\)</p> <p>= 4 cos<sup>3</sup>\(\frac {\theta}3\) - 3 cos\(\frac {\theta}3\)</p> <p>= 4&times; (\(\frac 23\))<sup>3</sup> - 3&times; \(\frac 23\)</p> <p>= 4&times; \(\frac 8{27}\) - \(\frac 63\)</p> <p>= \(\frac {32 - 54}{27}\)</p> <p>= \(\frac {-22}{27}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q3:

If tan\(\frac {\alpha}3\) = \(\frac 15\), prove that:

tan\(\alpha\) = \(\frac {37}{55}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>tan\(\frac {\alpha}3\) = \(\frac 15\)</p> <p>L.H.S.</p> <p>=tan\(\alpha\)</p> <p>= \(\frac {3 tan{\frac {\alpha}3} - tan^3{\frac {\alpha}3}}{1 - 3 tan^2 {\frac {\alpha}3}}\)</p> <p>= \(\frac {3 &times; {\frac 15} - (\frac 15)^3}{1 - 3 &times; (\frac 15)^2}\)</p> <p>= \(\frac {\frac 35 - \frac 1{125}}{1 - \frac 3{25}}\)</p> <p>= \(\frac {\frac {75 - 1}{125}}{\frac {25 - 3}{25}}\)</p> <p>= \(\frac {74}{125}\)&times; \(\frac {25}{25}\)</p> <p>= \(\frac {37}{55}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q4:

Prove that:

\(\frac {1 + cos\theta}{1 - cos\theta}\) = cot2\(\frac {\theta}2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {1 + cos\theta}{1 - cos\theta}\)</p> <p>= \(\frac {1 + 2 cos^2{\frac \theta2} - 1}{1 - (1 - 2sin^2\frac {\theta}2)}\)</p> <p>=\(\frac {2 cos^2{\frac \theta2}}{1 - 1 + 2sin^2\frac {\theta}2}\)</p> <p>= \(\frac {2 cos^2\frac \theta2}{2 sin^2\frac \theta2}\)</p> <p>=\(\frac {cos^2\frac \theta2}{sin^2\frac \theta2}\)</p> <p>= cot<sup>2</sup>\(\frac \theta2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q5:

Prove that:

\(\frac {1 - tan^2({\frac \pi4} - {\frac \theta4})}{1 + tan^2({\frac \pi4} - {\frac \theta4})}\) = sin\(\frac \theta2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {1 - tan^2({\frac \pi4} - {\frac \theta4})}{1 +tan^2({\frac \pi4} - {\frac \theta4})}\)</p> <p>= cos 2(\(\frac \pi4\) - \(\frac \theta4\))</p> <p>= cos (\(\frac \pi2\) - \(\frac \theta2\))</p> <p>= sin\(\frac \theta2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p> <p></p>

Q6:

Prove that:

\(\frac {1 + sin\theta - cos\theta}{1 + sin\theta + cos\theta}\) = tan\(\frac \theta2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {1 + sin\theta - cos\theta}{1 + sin\theta + cos\theta}\)</p> <p>= \(\frac {1 + 2 sin\frac \theta2 cos\frac \theta2 - 1 + 2 sin^2\frac \theta2}{1 + 2 sin\frac \theta2 cos\frac \theta2 + 2 cos^2\frac \theta2 - 1}\)</p> <p>= \(\frac {2 sin\frac \theta2 (cos\frac \theta2 + sin\frac \theta2)}{2 cos\frac \theta2 (cos\frac \theta2 + sin\frac \theta2)}\)</p> <p>= \(\frac {sin\frac \theta2}{cos\frac \theta2}\)</p> <p>= tan\(\frac \theta2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q7:

Prove that:

\(\frac {sin^3 \frac \theta2 + cos^3 \frac \theta2}{sin \frac \theta2 + cos \frac \theta2}\) = 1 - \(\frac 12\)sin\(\theta\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin^3 \frac \theta2 + cos^3 \frac \theta2}{sin \frac \theta2 + cos \frac \theta2}\)</p> <p>= \(\frac {(sin \frac \theta2 + cos \frac \theta2) (sin^2\frac \theta2 + cos^2\frac \theta2 - sin\frac \theta2 cos\frac \theta2)}{(sin\frac \theta2 + cos\frac \theta2)}\)</p> <p>= 1 - \(\frac 22\) sin\(\frac \theta2\) cos\(\frac \theta2\)</p> <p>= 1 - \(\frac 12\)sin\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q8:

Prove that:

\(\frac {sin\frac A2 + sinA}{1 + cos\frac A2 + cosA}\) = tan \(\frac A2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin\frac A2 + sinA}{1 + cos\frac A2 + cosA}\)</p> <p>= \(\frac {sin\frac A2 + 2 sin\frac A2 cos\frac A2}{1 + cos\frac A2 + 2 cos^2\frac A2 - 1}\)</p> <p>= \(\frac {sin \frac A2 (1 + 2 cos\frac A2)}{cos \frac A2 (1 + 2 cos\frac A2)}\)</p> <p>= tan\(\frac A2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q9:

If sin \(\frac \theta3\) = \(\frac 12\), find the value of sin\(\theta\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin \(\frac \theta3\) = \(\frac 12\)</p> <p>sin\(\theta\)</p> <p>= 3 sin \(\frac \theta3\) - 4 sin<sup>3</sup>\(\frac \theta3\)</p> <p>= 3&times; \(\frac 12\) - 4&times; (\(\frac 12\))<sup>3</sup></p> <p>= \(\frac 32\) - \(\frac 12\)</p> <p>= \(\frac {3 - 1}{2}\)</p> <p>= \(\frac 22\)</p> <p>= 1 <sub>Ans</sub></p>

Q10:

Prove that:

\(\frac {cos\alpha}{1 - sin\alpha}\) = \(\frac {1 + tan\frac \alpha2}{1 - tan\frac \alpha2}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {cos\alpha}{1 - sin\alpha}\)</p> <p>= \(\frac {\frac {1 - tan^2\frac \alpha2}{1 + tan^2\frac \alpha2}}{1 - \frac {2 tan\frac \alpha2}{1 + tan^2\frac \alpha2}}\)</p> <p>=\(\frac {\frac {1 - tan^2\frac \alpha2}{1 + tan^2\frac \alpha2}}{\frac {1 + tan^2\frac \alpha2 - 2 tan\frac \alpha2}{1 + tan^2\frac \alpha2}}\)</p> <p>= \(\frac {1 - tan^2\frac \alpha2}{(1 - tan\frac \alpha2)^2}\)</p> <p>= \(\frac {(1 + tan\frac \alpha2)(1 - tan\frac \alpha2)}{(1 - tan\frac \alpha2)^2}\)</p> <p>=\(\frac {1 + tan\frac \alpha2}{1 - tan\frac \alpha2}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q11:

Prove that:

\(\frac {sin 2A}{1 + cos 2A}\) × \(\frac {cosA}{1 + cosA}\) = tan\(\frac A2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 2A}{1 + cos 2A}\)&times; \(\frac {cosA}{1 + cosA}\)</p> <p>= \(\frac {2 sinA cosA}{2 cos^2A}\)&times; \(\frac {cosA}{1 + cosA}\)</p> <p>= \(\frac {sinA}{1 + cosA}\)</p> <p>= \(\frac {2 sin\frac A2 cos\frac A2}{2 cos^2\frac A2}\)</p> <p>= tan\(\frac A2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q12:

If cos 30° = \(\frac {\sqrt 3}2\), find the value of sin 15°.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Let A = 30&deg;</p> <p>cos 30&deg; = \(\frac {\sqrt 3}2\)</p> <p>We know,</p> <p>sin \(\frac A2\) =&plusmn; \(\sqrt {\frac {1 - cosA}{2}}\)</p> <p>sin \(\frac {30&deg;}2\) =&plusmn; \(\sqrt {\frac {1 - cos 30&deg;}{2}}\)</p> <p>sin 15&deg; =&plusmn; \(\sqrt {\frac {1 - \frac {\sqrt 3}2}{\frac 21}}\)</p> <p>or, sin 15&deg; = &plusmn; \(\sqrt {\frac {2 - \sqrt 3}{2} &times; \frac {1}{2}}\)</p> <p>or, sin 15&deg; =&plusmn; \(\sqrt {\frac {2 - \sqrt 3}{4}}\)</p> <p>or, sin 15&deg; =&plusmn; \(\sqrt {\frac {4 - 2\sqrt 3}{8}}\)</p> <p>or, sin 15&deg; =&plusmn; \(\sqrt {\frac {3 - 2\sqrt 3 + 1}{8}}\)</p> <p>or, sin 15&deg; =&plusmn; \(\sqrt {\frac {(\sqrt 3 -1)^2}{8}}\)</p> <p>&there4; sin 15&deg; =&plusmn; \(\frac {\sqrt 3 -1}{2\sqrt 2}\) <sub>Ans</sub></p>

Q13:

Prove that:

\(\frac {2 sin\beta + sin 2\beta}{2 sin\beta - sin 2\beta}\) = cot2\(\frac \beta2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {2 sin\beta + sin 2\beta}{2 sin\beta - sin 2\beta}\)</p> <p>=\(\frac {2 sin\beta + 2 sin\beta cos\beta}{2 sin\beta - 2 sin\beta cos\beta}\)</p> <p>= \(\frac {2 sin\beta (1 + cos\beta)}{2 sin\beta (1 - cos\beta)}\)</p> <p>= \(\frac {2 cos^2\frac \beta2}{2 sin^2\frac \beta2}\)</p> <p>[\(\because\) 1 + cos\(\theta\) = 2 cos<sup>2</sup>\(\frac \theta2\),1 - cos\(\theta\) = 2 sin<sup>2</sup>\(\frac \theta2\)]</p> <p>= cot<sup>2</sup>\(\frac \beta2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q14:

If sin \(\frac \theta3\) = \(\frac 45\), find the value of sin\(\theta\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin \(\frac \theta3\) = \(\frac 45\)</p> <p>sin\(\theta\)</p> <p>= 3 sin \(\frac \theta3\) - 4 sin<sup>3</sup>\(\frac \theta3\)</p> <p>= 3&times; \(\frac 45\) - 4&times; (\(\frac 45\))<sup>3</sup></p> <p>= \(\frac {12}5\) - \(\frac {256}{125}\)</p> <p>= \(\frac {300 - 256}{125}\)</p> <p>= \(\frac {44}{125}\) <sub>Ans</sub></p>

Q15:

If cos\(\frac \theta3\) = \(\frac 35\), find the value of cos\(\theta\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos\(\frac \theta3\) = \(\frac 35\)</p> <p>cos \(\theta\)</p> <p>= 4 cos<sup>3</sup>\(\frac \theta3\) - 3 cos\(\frac \theta3\)</p> <p>= 4&times; (\(\frac 35\))<sup>3</sup>- 3&times; \(\frac 35\)</p> <p>= 4&times; \(\frac {27}{125}\) - \(\frac 95\)</p> <p>= \(\frac {108 - 225}{125}\)</p> <p>= -\(\frac {117}{125}\) <sub>Ans</sub></p>

Q16:

Find the value of sin\(\theta\) if sin\(\frac \theta2\) = \(\frac 35\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin\(\frac \theta2\) = \(\frac 35\)</p> <p>cos\(\frac \theta2\)</p> <p>= \(\sqrt {1 - sin^2\frac \theta2}\)</p> <p>= \(\sqrt {1 - (\frac 35)^2}\)</p> <p>= \(\sqrt {1-\frac 9{25}}\)</p> <p>= \(\sqrt {\frac {25 - 9}{25}}\)</p> <p>= \(\sqrt {\frac {16}{25}}\)</p> <p>= \(\frac 45\)</p> <p>Now,</p> <p>sin\(\theta\) = 2 sin\(\frac \theta2\)&sdot; cos\(\frac \theta2\) = 2&times; \(\frac 35\)&times; \(\frac 45\) = \(\frac {24}{25}\) <sub>Ans</sub></p>

Q17:

Prove that:

\(\frac {tanx + sinx}{2 tanx}\) = cos2\(\frac x2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {tanx + sinx}{2 tanx}\)</p> <p>= \(\frac {\frac {sinx}{cosx} + sinx}{\frac {2 sinx}{cosx}}\)</p> <p>= \(\frac {\frac {sinx + sinx cosx}{cosx}}{\frac {2sinx}{cosx}}\)</p> <p>= \(\frac {sinx (1 + cosx)}{2 sinx}\)</p> <p>= \(\frac {1 + cosx}{2}\)</p> <p>= cos<sup>2</sup>\(\frac x2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q18:

Prove that:

\(\frac {2 sinA - sin 2A}{2 sinA + sin2A}\) = tan2\(\frac A2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {2 sinA - sin 2A}{2 sinA + sin2A}\)</p> <p>= \(\frac {2 sinA - 2 sinA cosA}{2 sinA + 2 sinA cosA}\)</p> <p>= \(\frac {2 sinA (1 - cosA)}{2 sinA (1 + cosA)}\)</p> <p>= \(\frac {1 - cosA}{1 + cosA}\)</p> <p>= \(\frac {2 sin^2\frac A2}{2 cos^2\frac A2}\)</p> <p>= tan<sup>2</sup>\(\frac A2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q19:

If sin 45° = \(\frac 1{\sqrt2}\), find the value of sin22\(\frac 12\)°.                                                                                                                                    


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin 45&deg; = \(\frac 1{\sqrt2}\)</p> <p>We know,</p> <p>cos45&deg;</p> <p>= \(\sqrt {1 - sin^245&deg;}\)</p> <p>= \(\sqrt {1 - (\frac 1{\sqrt 2})^2}\)</p> <p>= \(\sqrt {1 - \frac 12}\)</p> <p>= \(\frac 1{\sqrt 2}\)</p> <p>Now,</p> <p>cosA= 1 - 2 sin<sup>2</sup>\(\frac A2\)</p> <p>Let: A = 45&deg;</p> <p>or, cos 45&deg; = 1 - 2 sin<sup>2</sup>22\(\frac 12\)&deg;</p> <p>or, 2 sin<sup>2</sup>22\(\frac 12\)&deg; = 1 - cos 45&deg;</p> <p>or,2 sin<sup>2</sup>22\(\frac 12\)&deg; = 1 - \(\frac 1{\sqrt 2}\)</p> <p>or,2 sin<sup>2</sup>22\(\frac 12\)&deg; = \(\frac {\sqrt 2 -1}{\sqrt 2}\)</p> <p>or,2 sin<sup>2</sup>22\(\frac 12\)&deg; = \(\frac {\sqrt 2 - 1}{\sqrt 2}\)&times; \(\frac {\sqrt 2}{\sqrt 2}\)</p> <p>or,2 sin<sup>2</sup>22\(\frac 12\)&deg; = \(\frac {2 - \sqrt 2}{2 &times; 2}\)</p> <p>or,2 sin<sup>2</sup>22\(\frac 12\)&deg; = \(\frac {2 - \sqrt 2}{4}\)</p> <p>or,2 sin<sup>2</sup>22\(\frac 12\)&deg; =&plusmn; \(\sqrt {\frac {2 - \sqrt 2}{4}}\)</p> <p>&there4;2 sin<sup>2</sup>22\(\frac 12\)&deg; =&plusmn; \(\frac 12\) \(\sqrt {2 - \sqrt 2}\) <sub>Ans</sub></p>

Q20:

Prove that:

cos2(\(\frac \pi4\) - \(\frac \theta4\)) - sin2(\(\frac \pi4\) - \(\frac \theta4\)) = sin\(\frac \theta2\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>2</sup>(\(\frac \pi4\) - \(\frac \theta4\)) - sin<sup>2</sup>(\(\frac \pi4\) - \(\frac \theta4\))</p> <p>= cos 2(\(\frac \pi4\) - \(\frac \theta4\)) [\(\because\) cos<sup>2</sup>A - sin<sup>2</sup>A = cos 2A]</p> <p>= cos(\(\frac \pi2\) - \(\frac \theta2\))</p> <p>= cos (90 - \(\frac \theta2\))</p> <p>= sin\(\frac \theta2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q21:

If cos\(\frac \theta3\) = \(\frac 12\)(a + \(\frac 1a\)), prove that:

cos\(\theta\) = \(\frac 12\)(a3 + \(\frac 1{a^3}\))


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos\(\frac \theta3\) = \(\frac 12\)(a + \(\frac 1a\))</p> <p>L.H.S.</p> <p>=cos\(\theta\)</p> <p>= 4 cos<sup>3</sup>\(\frac \theta3\) - 3 cos\(\frac \theta3\)</p> <p>= 4 [\(\frac 12\)(a + \(\frac 1a\))]<sup>3</sup> - 3 [\(\frac 12\)(a + \(\frac 1a\))]</p> <p>= 4&times; \(\frac 18\) (a + \(\frac 1a\))<sup>3</sup> - 3&times;\(\frac 12\)(a + \(\frac 1a\))</p> <p>= \(\frac 12\)[(a + \(\frac 1a\))<sup>3</sup> - 3&times; (a + \(\frac 1a\))]</p> <p>= \(\frac 12\) [a<sup>3</sup> + \(\frac 1{a^3}\) + 3.a.\(\frac 1a\) - 3(a + \(\frac 1a\))]</p> <p>= \(\frac 12\)(a<sup>3</sup> + \(\frac 1{a^3}\))</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q22:

Prove that:

cotA = \(\frac 12\)(cot\(\frac A2\) - tan\(\frac A2\))


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>R.H.S.</p> <p>= \(\frac 12\)(cot\(\frac A2\) - tan\(\frac A2\))</p> <p>= \(\frac 12\)(\(\frac {cos\frac A2}{sin \frac A2}\) - \(\frac {sin\frac A2}{cos\frac A2}\))</p> <p>= \(\frac 12\)(\(\frac {cos^2\frac A2 - sin^2\frac A2}{sin\frac A2 cos\frac A2}\))</p> <p>= \(\frac {cosA}{sinA}\)</p> <p>= cot A <sub>Proved</sub></p>

Q23:

If cos\(\frac A3\) = \(\frac 12\)(p + \(\frac 1p\)), prove that:

cosA = \(\frac 12\)(p3 + \(\frac 1{p^3}\))


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos\(\frac A3\) = \(\frac 12\)(p + \(\frac 1p\))</p> <p>L.H.S.</p> <p>=cosA</p> <p>= 4 cos<sup>3</sup>\(\frac A3\) - 3 cos\(\frac A3\)</p> <p>= 4 [\(\frac 12\)(p + \(\frac 1p\))]<sup>3</sup> - 3 [\(\frac 12\)(p + \(\frac 1p\))]</p> <p>= 4&times; \(\frac 18\) (p + \(\frac 1p\))<sup>3</sup> - 3&times;\(\frac 12\)(p + \(\frac 1p\))</p> <p>= \(\frac 12\)[(p + \(\frac 1p\))<sup>3</sup> - 3&times; (p + \(\frac 1p\))]</p> <p>= \(\frac 12\) [p<sup>3</sup> + \(\frac 1{p^3}\) + 3.p.\(\frac 1p\) - 3(p + \(\frac 1p\))]</p> <p>= \(\frac 12\)(p<sup>3</sup> + \(\frac 1{p^3}\))</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q24:

If sin\(\frac \alpha3\) = \(\frac 35\), find the value of sin\(\alpha\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin\(\frac \alpha3\) = \(\frac 35\)</p> <p>sin \(\alpha\)</p> <p>= 3 sin\(\frac \alpha3\) - 4 sin<sup>3</sup>\(\frac \alpha3\)</p> <p>= 3 &times; \(\frac 35\) - 4 &times; (\(\frac 35\))<sup>3</sup></p> <p>= \(\frac 95\) - 4 &times; \(\frac {27}{125}\)</p> <p>= \(\frac {225 - 108}{125}\)</p> <p>= \(\frac {117}{125}\) <sub>Ans</sub></p>

Q25:

If sin\(\alpha\) = \(\frac 35\), find the values of cos 2\(\alpha\) and sin 3\(\alpha\).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin\(\alpha\) = \(\frac 35\)</p> <p>cos\(\alpha\) = \(\sqrt {1 - sin^2\alpha}\) = \(\sqrt {1 - (\frac 35)^2}\) = \(\sqrt {1 - \frac 9{25}}\) = \(\sqrt {\frac {25 - 9}{25}}\) = \(\sqrt {\frac {16}{25}}\) = \(\frac 45\)</p> <p>Now,</p> <p>cos 2\(\alpha\)</p> <p>= cos<sup>2</sup>\(\alpha\) - sin<sup>2</sup>\(\alpha\)</p> <p>= (\(\frac 45\))<sup>2</sup>- (\(\frac 35\))<sup>2</sup></p> <p>= \(\frac {16}{25}\) - \(\frac {9}{25}\)</p> <p>= \(\frac {16 - 9}{25}\)</p> <p>= \(\frac 7{25}\)</p> <p>Again,</p> <p>sin 3\(\alpha\)</p> <p>= 3 sin\(\alpha\) - 4 sin<sup>3</sup>\(\alpha\)</p> <p>= 3&times; \(\frac 35\) - 4&times; (\(\frac 35\))<sup>3</sup></p> <p>= \(\frac 95\) - 4 &times; \(\frac {27}{125}\)</p> <p>= \(\frac 95\) - \(\frac {108}{125}\)</p> <p>= \(\frac {225 - 108}{125}\)</p> <p>= \(\frac {117}{125}\)</p> <p>&there4; cos 2\(\alpha\) = \(\frac 7{25}\) and sin 3\(\alpha\) = \(\frac {117}{125}\) <sub>Ans</sub></p>

Q26:

Prove that:

tan(\(\frac {\pi^c}{4}\) - \(\frac A2\)) = \(\sqrt {\frac {1 - sinA}{1 + sinA}}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=tan(\(\frac {\pi^c}{4}\) - \(\frac A2\))</p> <p>= \(\frac {tan\frac \pi4 - tan\frac A2}{1 + tan\frac \pi4 . tan\frac A2}\)</p> <p>= \(\frac {1 - tan\frac A2}{1 + tan\frac A2}\)</p> <p>= \(\frac {1 - \frac {sin\frac A2}{cos\frac A2}}{1 + \frac {sin\frac A2}{cos\frac A2}}\)</p> <p>= \(\frac {\frac {cos\frac A2 - sin\frac A2}{cos\frac A2}}{\frac {cos\frac A2 + sin\frac A2}{cos\frac A2}}\)</p> <p>= \(\frac {cos\frac A2 - sin\frac A2}{cos\frac A2 + sin\frac A2}\)&times;\(\frac {cos\frac A2 - sin\frac A2}{cos\frac A2 -sin\frac A2}\)</p> <p>= \(\frac {(cos\frac A2 - sin\frac A2)^2}{cos^2\frac A2 - sin^2\frac A2}\)</p> <p>= \(\frac {cos^2\frac A2 + sin^2\frac A2 - 2 sin\frac A2.cos\frac A2}{cosA}\)</p> <p>= \(\frac {1 - sinA}{\sqrt {1 - sin^2A}}\)</p> <p>= \(\sqrt {\frac {(1 - sinA) (1 - sinA)}{(1 + sinA) (1 - sinA)}}\)</p> <p>= \(\sqrt {\frac {1 - sinA}{1 + sinA}}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q27:

Prove that:

cot22\(\frac 12\)° - tan22\(\frac 12\)° = 2


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cot22\(\frac 12\)&deg; - tan22\(\frac 12\)&deg;</p> <p>= \(\frac {cos 22\frac 12&deg;}{sin 22\frac 12&deg;}\) -\(\frac {sin 22\frac 12&deg;}{cos 22\frac 12&deg;}\)</p> <p>= \(\frac {cos^2 22\frac 12&deg; - sin^2 22\frac 12&deg;}{sin 22\frac 12&deg; cos 22\frac 12&deg;}\)</p> <p>= \(\frac {cos 2.22\frac 12&deg;}{\frac 12 &times; 2 sin 22\frac 12&deg; cos 22\frac 12&deg;}\)</p> <p>= \(\frac {cos 45&deg;}{\frac 12 sin 2.22\frac 12&deg;}\)</p> <p>= \(\frac {2 &times; \frac 1{\sqrt 2}}{sin 45&deg;}\)</p> <p>= \(\frac {2 &times; \frac 1{\sqrt 2}}{\frac 1{\sqrt 2}}\)</p> <p>= 2</p> <p>Hence, L.H.S = R.H.S. <sub>Proved</sub></p> <p></p>

Q28:

Find the value of sin 18°.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let: A = 18&deg;</p> <p>Then,</p> <p>5A = 90&deg;</p> <p>or, 2A + 3A = 90&deg;</p> <p>or, 3A = 90&deg; - 2A</p> <p>Puting cos on both sides:</p> <p>cos 3A = cos (90&deg; - 2A)</p> <p>or, 4 cos<sup>3</sup>A - 3 cosA = sin 2A</p> <p>or, cosA(4 cos<sup>2</sup>A - 3) = 2 sinA cosA</p> <p>or, 4 (1 - sin<sup>2</sup>A) - 3 = 2 sinA</p> <p>or, 4 - 4 sin<sup>2</sup>A - 3 - 2 sinA = 0</p> <p>or, - 4 sin<sup>2</sup>A - 2 sinA + 1 = 0</p> <p>or, -(4 sin<sup>2</sup>A + 2 sinA - 1) = 0</p> <p>or,4 sin<sup>2</sup>A + 2 sinA - 1 = 0</p> <p>Comparing the above condition with ax<sup>2</sup> + bx + c = 0</p> <p>a = 4</p> <p>b = 2</p> <p>c = -1</p> <p>x = \(\frac {-b &plusmn; \sqrt {b^2 - 4ac}}{2a}\)</p> <p>Now,</p> <p>sin 18&deg;</p> <p>=\(\frac {-2 &plusmn; \sqrt {2^2 - 4 &times; 4 &times; (-1)}}{2 &times; 4}\)</p> <p>=\(\frac {-2 &plusmn; \sqrt {4 + 16}}{8}\)</p> <p>=\(\frac {-2 &plusmn; \sqrt {20}}{8}\)</p> <p>= \(\frac {2 (-1 + \sqrt 5)}{8}\)</p> <p>= \(\frac {-1 + \sqrt 5}{4}\) <sub>Ans</sub></p> <p></p>

Q29:

Prove that:

tan(\(\frac {\pi}4 + \frac A2\)) = secA + tanA


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=tan(\(\frac {\pi}4 + \frac A2\))</p> <p>= \(\frac {tan \frac \pi4 + tan\frac A2}{1 - tan \frac \pi4 tan \frac A2}\)</p> <p>= \(\frac {tan 45&deg; + tan\frac A2}{1 - tan 45&deg; tan\frac A2}\)</p> <p>= \(\frac {1 + \frac {sin\frac A2}{cos\frac A2}}{1 - 1 &times; \frac {sin \frac A2}{cos\frac A2}}\)</p> <p>= \(\frac {\frac {cos\frac A2 + sin\frac A2}{cos\frac A2}}{\frac {cos\frac A2 - sin\frac A2}{cos\frac A2}}\)</p> <p>= \(\frac {cos\frac A2 + sin\frac A2}{cos\frac A2 - sin\frac A2}\)&times; \(\frac {cos\frac A2 + sin\frac A2}{cos\frac A2 + sin\frac A2}\)</p> <p>= \(\frac {(cos\frac A2 + sin\frac A2)^2}{cos^2\frac A2 - sin^2\frac A2}\)</p> <p>= \(\frac {cos^2\frac A2 + sin^2\frac A2 + 2 sin\frac A2 cos\frac A2}{cosA}\)</p> <p>= \(\frac {1 + sinA}{cosA}\)</p> <p>= \(\frac 1{cosA}\) + \(\frac {sinA}{cosA}\)</p> <p>= secA + tanA</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q30:

Prove that:

\(\frac {sin 2A}{1 + cos 2A} × \frac {cosA}{1 + cosA}\) = tan\(\frac A2\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=\(\frac {sin 2A}{1 + cos 2A} &times; \frac {cosA}{1 + cosA}\)</p> <p>= \(\frac {2 sinA cosA}{1 + 2 cos^2A - 1}&times; \frac {cosA}{1 + cosA}\)</p> <p>= \(\frac {2 sinA cosA}{2 cos^2A}&times; \frac {cosA}{1 + cosA}\)</p> <p>= \(\frac {sinA}{1 + cosA}\)</p> <p>= \(\frac {2 sin\frac A2 cos\frac A2}{1 + 2 cos^2\frac A2 - 1}\)</p> <p>= \(\frac {2 sin\frac A2 cos\frac A2}{2 cos^2\frac A2}\)</p> <p>= \(\frac {sin\frac A2}{cos\frac A2}\)</p> <p>= tan\(\frac A2\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q31:

Prove that:

sec(\(\frac \pi4\) + \(\frac \theta2\)) × sec(\(\frac \pi4\) - \(\frac \theta2\)) = 2 sec\(\theta\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=sec(\(\frac \pi4\) + \(\frac \theta2\))&times;sec(\(\frac \pi4\) - \(\frac \theta2\))</p> <p>= \(\frac 1{cos (\frac \pi4 + \frac \theta2)}\)&times;\(\frac 1{cos (\frac \pi4 - \frac \theta2)}\)</p> <p>= \(\frac 1{(cos\frac \pi4 cos\frac \theta2 - sin\frac \pi4 sin\frac \theta2)(cos\frac \pi4 cos\frac \theta2 + sin\frac \pi4 sin\frac \theta2)}\)</p> <p>= \(\frac 1{(\frac 1{\sqrt 2} cos\frac \theta2 - \frac 1{\sqrt 2} sin\frac \theta2)(\frac 1{\sqrt 2} cos\frac \theta2 + \frac 1{\sqrt 2} sin\frac \theta2)}\)</p> <p>= \(\frac 1{\frac 1{\sqrt 2} (cos\frac \theta2 - sin\frac \theta2) &times; \frac 1{\sqrt 2} (cos\frac \theta2 + sin\frac \theta2)}\)</p> <p>=\(\frac 1{\frac 12 (cos^2\frac \theta2 - sin^2\frac \theta2)}\)</p> <p>= \(\frac 2{cos\theta}\)</p> <p>= 2 sec\(\theta\)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q32:

Prove that:

cot(\(\frac A2\) + 45°) - tan(\(\frac A2\) + 45°) = \(\frac {2 cosA}{1 + sinA}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cot(\(\frac A2\) + 45&deg;) - tan(\(\frac A2\) + 45&deg;)</p> <p>= \(\frac {cot\frac A2 cot 45&deg; - 1}{cot 45&deg; + cot\frac A2}\) -\(\frac {tan\frac A2 tan 45&deg;}{1 + tan\frac A2 tan 45&deg;}\)</p> <p>= \(\frac {\frac {cos\frac A2}{sin\frac A2} &times;1 - 1}{1 + \frac {cos\frac A2}{sin\frac A2}}\) -\(\frac {\frac {sin\frac A2}{cos\frac A2} - 1}{1 + \frac {sin\frac A2}{cos\frac A2}&times;1}\)</p> <p>= \(\frac {\frac {cos\frac A2 - sin\frac A2}{sin\frac A2}}{\frac {sin\frac A2 + cos\frac A2}{sin\frac A2}}\) -\(\frac {\frac {sin\frac A2 - cos\frac A2}{cos\frac A2}}{\frac {cos\frac A2 + sin\frac A2}{cos\frac A2}}\)</p> <p>=\(\frac {cos\frac A2 - sin\frac A2}{sin\frac A2 + cos\frac A2}\)- \(\frac {sin\frac A2 - cos\frac A2}{cos\frac A2 + sin\frac A2}\)</p> <p>= \(\frac {cos\frac A2 - sin\frac A2 - sin\frac A2 + cos\frac A2}{cos\frac A2 + sin\frac A2}\)</p> <p>= \(\frac {2(cos\frac A2 - sin\frac A2)}{cos\frac A2 + sin\frac A2}\)&times; \(\frac {cos\frac A2 - sin\frac A2}{cos\frac A2 - sin\frac A2}\)</p> <p>= \(\frac {2(cos^2\frac A2 + sin^2\frac A2 - 2sin\frac A2 cos\frac A2)}{cos^2\frac A2 - sin^2\frac A2}\)</p> <p>= \(\frac {2(1 - sinA)}{cosA}\)&times; \(\frac {cosA}{cosA}\)</p> <p>= \(\frac {2(1 - sinA) cosA}{1 - sin^2A}\)</p> <p>= \(\frac {2 cosA (1 - sinA)}{(1 + sinA) (1 - sinA)}\)</p> <p>= \(\frac {2 cosA}{1 + sinA}\)</p> <p>Hence, L.H.S. = R.H.S. <sub>proved</sub></p>

Q33:

Prove that:

tan (\(\frac \pi4\) + \(\frac A2\)) = \(\sqrt {\frac {1 + sinA}{1 - sinA}}\) = \(\frac {1 + sinA}{cosA}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=tan (\(\frac \pi4\) + \(\frac A2\))</p> <p>= \(\frac {tan\frac \pi4 + tan\frac A2}{1 - tan\frac \pi4 tan\frac A2}\)</p> <p>= \(\frac {1 + \frac {sin\frac A2}{cos\frac A2}}{1 -\frac {sin\frac A2}{cos\frac A2}}\)</p> <p>= \(\frac {\frac {cos\frac A2 + sin\frac A2}{cos\frac A2}}{\frac {cos\frac A2 - sin\frac A2}{cos\frac A2}}\)</p> <p>= \(\frac {cos\frac A2 + sin\frac A2}{cos\frac A2 - sin\frac A2}\)</p> <p>= \(\sqrt {\frac {(cos\frac A2 + sin\frac A2)^2}{(cos\frac A2 - sin\frac A2)^2}}\)</p> <p>= \(\sqrt {\frac {cos^2\frac A2 + 2 cos\frac A2 sin\frac A2 + sin^2\frac A2}{cos^2\frac A2 - 2 cos\frac A2 sin\frac A2 + sin^2\frac A2}}\)</p> <p>= \(\sqrt {\frac {1 + sinA}{1 - sinA}}\) M.H.S</p> <p>Again,</p> <p>\(\sqrt {\frac {1 + sinA}{1 - sinA}}\)</p> <p>=\(\sqrt {\frac {1 + sinA}{1 - sinA} &times; \frac {1 + sinA}{1 + sinA}}\)</p> <p>= \(\sqrt {\frac {(1 + sinA)^2}{cos^2A}}\)</p> <p>= \(\frac {1 + sinA}{cosA}\)</p> <p>Hence, L.H.S = M.H.S = R.H.S. <sub>Proved</sub></p>

Q34:

Prove that:

cos4\(\frac \pi8\) + cos4\(\frac {3\pi}8\) + cos4\(\frac {5\pi}8\) + cos4\(\frac {7\pi}8\) = \(\frac 32\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos<sup>4</sup>\(\frac \pi8\) + cos<sup>4</sup>\(\frac {3\pi}8\) + cos<sup>4</sup>\(\frac {5\pi}8\) + cos<sup>4</sup>\(\frac {7\pi}8\)</p> <p>=cos<sup>4</sup>\(\frac \pi8\) + cos<sup>4</sup>\(\frac {3\pi}8\) + cos<sup>4</sup>(\(\pi\) - \(\frac {3\pi}8\)) + cos<sup>4</sup>(\(\pi\) - \(\frac {\pi}8\))</p> <p>=cos<sup>4</sup>\(\frac \pi8\) + cos<sup>4</sup>\(\frac {3\pi}8\) + cos<sup>4</sup>\(\frac {3\pi}8\) + cos<sup>4</sup>\(\frac {\pi}8\)</p> <p>= 2 cos<sup>4</sup>\(\frac \pi8\) + 2 cos<sup>4</sup>\(\frac {3\pi}8\)</p> <p>= 2 (cos<sup>4</sup>\(\frac \pi8\) + cos<sup>4</sup>\(\frac {3\pi}8\))</p> <p>= 2 [cos<sup>4</sup>\(\frac \pi8\) + cos<sup>4</sup>(\(\frac{\pi}2 - \frac {\pi}8\))]</p> <p>= 2 [cos<sup>4</sup>\(\frac \pi8\) + sin<sup>4</sup>\(\frac \pi8\)]</p> <p>= 2 [(cos<sup>2</sup>\(\frac \pi8\))<sup>2</sup> + (sin<sup>2</sup>\(\frac \pi8\))<sup>2</sup>]</p> <p>= 2 [(cos<sup>2</sup>\(\frac \pi8\) + sin<sup>2</sup>\(\frac \pi8\))<sup>2</sup> - 2cos<sup>2</sup>\(\frac \pi8\)sin<sup>2</sup>\(\frac \pi8\)]</p> <p>= [2 - 4 cos<sup>2</sup>\(\frac \pi8\)sin<sup>2</sup>\(\frac \pi8\)]</p> <p>= 2 - (2 sin\(\frac \pi8\)cos\(\frac \pi8\) )<sup>2</sup></p> <p>= 2 - (sin 2 . \(\frac \pi8\))<sup>2</sup></p> <p>= 2 - (sin \(\frac \pi4\))<sup>2</sup></p> <p>= 2 - (\(\frac 1{\sqrt 2}\))<sup>2</sup></p> <p>= 2 - \(\frac 12\)</p> <p>= \(\frac {4 - 1}2\)</p> <p>= \(\frac 32\)</p> <p>Hence, L.H.S. = R.H.S <sub>Proved</sub></p> <p></p>

Q35:

Without using table or calculator. Find the value of sin 18° and cos 36°. 


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Let:</p> <p>\(\theta\) = 18&deg;</p> <p>Then:</p> <p>5\(\theta\) = 90&deg;</p> <p>i.e. 2\(\theta\) + 3\(\theta\) = 5\(\theta\)</p> <p>or, 2\(\theta\) + 3\(\theta\) = 90&deg;</p> <p>or, 2\(\theta\) = 90&deg; - 3\(\theta\)</p> <p>Now,</p> <p>sin 2\(\theta\) = sin (90&deg; - 3\(\theta\))</p> <p>or, 2 sin\(\theta\) cos\(\theta\) = 4 cos<sup>3</sup>\(\theta\) - 3 cos\(\theta\)</p> <p>or,2 sin\(\theta\) cos\(\theta\) = cos\(\theta\) (4 cos<sup>2</sup>\(\theta\) - 3)</p> <p>or, 2 sin\(\theta\) = 4 - 4 sin<sup>2</sup>\(\theta\) - 3</p> <p>or, 2 sin\(\theta\) = 1 - 4sin<sup>2</sup>\(\theta\)</p> <p>or, 4sin<sup>2</sup>\(\theta\) +2 sin\(\theta\) - 1 = 0 .................................(i)</p> <p>Comparingequation (i) with quadratic equation ax<sup>2</sup>+ bx + c = 0, we get:</p> <p>sin\(\theta\)</p> <p>= \(\frac {-b &plusmn; \sqrt {b^2 - 4ac}}{2a}\)</p> <p>= \(\frac {-2 &plusmn; \sqrt {2^2 - 4 . 4 . (-1)}}{2 . 4}\)</p> <p>= \(\frac {-2 &plusmn; \sqrt {4 + 16}}{8}\)</p> <p>= \(\frac {-2 &plusmn; \sqrt {20}}{8}\)</p> <p>= \(\frac {-2 &plusmn; 2\sqrt 5}{8}\)</p> <p>= \(\frac {-1 &plusmn; \sqrt 5}{4}\)</p> <p>&there4; sin 18&deg; =\(\frac {-1 &plusmn; \sqrt 5}{4}\)</p> <p>But the value of sin 18&deg; is positive.</p> <p>Put (+) sign</p> <p>&there4; sin 18&deg; =\(\frac {-1 + \sqrt 5}{4}\)</p> <p>And</p> <p>cos 36&deg;</p> <p>= 1 - 2 sin<sup>2</sup>\(\frac {36&deg;}2\) [\(\because\) cos\(\theta\) = 1 - sin<sup>2</sup>\(\frac \theta2\)]</p> <p>= 1 - 2 sin<sup>2</sup>18&deg;</p> <p>= 1 - 2 (\(\frac {-1 + \sqrt 5}{4}\))<sup>2</sup></p> <p>= 1 - 2 (\(\frac {1 - 2\sqrt 5 + 5}{16}\))</p> <p>= 1 - (\(\frac {6 - 2\sqrt 5}8\))</p> <p>= \(\frac {8 - 6 + 2\sqrt 5}{8}\)</p> <p>= \(\frac {2 + 2\sqrt 5}{8}\)</p> <p>= \(\frac {2 (1 + \sqrt 5)}8\)</p> <p>= \(\frac {1 + \sqrt 5}4\)</p> <p>&there4; sin 18&deg; =\(\frac {-1 + \sqrt 5}{4}\)</p> <p>and cos 36&deg; =\(\frac {1 + \sqrt 5}{4}\) <sub>Ans</sub></p> <p></p>

Videos

Trigonometric Ratios Of Multiple and Sub Multiple Angles Example / Maths Trigonometry
Trigonometric Ratios Of Multiple and Sub Multiple Angles Example #11 / Maths Trigonometry
Trigonometric Ratios Of Multiple and Sub Multiple Angles Example / Maths Trigonometry
Electric Power Consumption

Electric Power Consumption

The total electric energy consumed by an individual (especially houses) measured in kilowatt-hour is called electric power consumption. All the power companies install a meter in their customer's house so that they can charge according to the electric consumption. Those installed meters measure electricity on kilowatt-hour (KWH). In normal terms, we say 1 unit for 1 KWH. It is actually the amount of power used for a certain period of time. For the easy purpose, we say an electrical appliance of 1000W consuming power for one hour will consume 1KWH i.e. 1KWH = 1KW x 1hr.

Power Consumption = Power consumed by appliance x no of appliance x time operating

= P (in KW) x N x T (in hour)

Amount to pay = power consumption x price per unit

So, to calculate total power consumption of a home, we need to know the power of each equipment, number of equipment and time they run. Since all the appliances are not run at the same time and same period of time it is better to calculate power consumed by each appliance and add all at last.

Example:

If a home has 10 tube lights of 30W that run for 4 hours daily, 5 television of 200W running for 3 hours daily, 2 irons 1000W 1 hour weekly. Calculate total amount to be paid if the cost per unit is Rs. 7.

Here,

Power consumed by tube lights in one day = 10 x 301000 x 4 = 65 KW Power consumed by tube lights in one month = 65 x 30 = 36 KW

Power consumed by television in one day = 5 x 2001000 x 3 = 3 KW Power consumed by television in one month = 3 x 30 = 90 KW

Power consumed by iron in one week = 2 x 10001000 x 1 = 2KW Power consumed by iron in one month = 2 x 4(one month has 4 weeks) = 8 KW

Total power consumption in one month = 36 + 90 + 8 = 134KW Total amount to be paid = total power consumption x price per unit= 134 x 7 = Rs. 938

Lesson

Electricity and Magnetism

Subject

Science

Grade

Grade 10

Recent Notes

No recent notes.

Related Notes

No related notes.