Processing math: 74%

Cement

Cement is a mixture of fine grey powder of calcium silicate and calcium aluminate. This note contains information on cement and its use.

Summary

Cement is a mixture of fine grey powder of calcium silicate and calcium aluminate. This note contains information on cement and its use.

Things to Remember

  • Cement is a mixture of fine grey powder of calcium silicate and calcium aluminate.
  • Paste formed by mixture of powdered form of the limestone and clay along with water to obtain a paste is called slurry.
  • The red colored pea sized balls of calcium silicate and calcium aluminate formed by heating slurry is called cement clinkers.
  • Cement is used for making houses, buildings, roads, etc.

MCQs

No MCQs found.

Subjective Questions

Q1:

What do you mean by transpose of a matrix? Illustrate with example.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Transpose of matrix: A matrix obtained by interchanging rows and columns of the given matrix is called transpose of the matrix.</p> <p>A = (aamp;bamp;cdamp;eamp;f)</p> <p>A<sup>T</sup> or A<sup>I</sup> =(aamp;dbamp;ecamp;f)</p> <p></p>

Q2:

If (4173) (2113)(x111y), find the value of x and y.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>(4amp;17amp;3) (2amp;11amp;3)= (xamp;111amp;y)</p> <p>or, (4times;2+1times;1amp;4times;1+1times;37times;2+1times;3amp;7times;1+3times;3) = (xamp;111amp;y)</p> <p>or, (8+1amp;4+3143amp;79) = (xamp;111amp;y)</p> <p>or, (9amp;111amp;16) = (xamp;111amp;y)</p> <p>&there4; x = 9 and y = -16 <sub>Ans</sub></p>

Q3:

Give A = [2118], find:

(i) The transpose of A, (ii) The value of determinant A. 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>A = [2amp;11amp;8]</p> <p>Transpose of A (A<sup>T</sup>) or A<sup>I</sup>= [2amp;11amp;8]</p> <p>|A| = |2amp;11amp;8| = -16 -(-1)= -16 + 1 = - 15 Ans</p>

Q4:

If M = [3273] and N = [2350] calculate the value of 2M + 3N.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>M = [3amp;27amp;3] and N = [2amp;35amp;0]</p> <p>2M = 2[3amp;27amp;3] =[6amp;414amp;6]</p> <p>3N = 3[2amp;35amp;0] =[6amp;915amp;0]</p> <p>2M + 3N =[6amp;414amp;6] +[6amp;915amp;0] = [6+6amp;491415amp;6+0] =[12amp;51amp;6] <sub>Ans</sub></p>

Q5:

If A = (2350) and B = (3425) then find the value of 2A - 3B.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = (2amp;35amp;0) and B = (3amp;42amp;5)</p> <p>2A - 3B = 2 (2amp;35amp;0) - 3 (3amp;42amp;5)</p> <p>=(4amp;610amp;0) -(9amp;126amp;15)</p> <p>=(4+9amp;612106amp;0+15)</p> <p>=(13amp;64amp;15) <sub>Ans</sub></p>

Q6:

If A = (1324) and B =  (4235), write the transpose of A + B.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = (1amp;32amp;4) and B = (4amp;23amp;5)</p> <p>A + B =(1amp;32amp;4) +(4amp;23amp;5)</p> <p>=(1+4amp;3+22+3amp;45)</p> <p>=(5amp;11amp;1)</p> <p>(A + B)<sup>T</sup> =(5amp;11amp;1) <sub>Ans</sub></p>

Q7:

A2×3 amd B3×3 are two matrices. Are AB and BA defined? Write with reasons.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>A<sub>2&times;3</sub> and B<sub>3&times;3</sub></p> <p>AB is defined because the number of column of A is equal to the number of rows of B.</p> <p>A<sub>2&times;3</sub> and B<sub>3&times;3</sub>= AB<sub>2&times;3</sub></p> <p>BA is not defined because the number of column of B is not equal to the number of rows of A.</p> <p>B<sub>3&times;3</sub> and A<sub>2&times;3</sub> , BA does not exist.</p>

Q8:

Prove that matrix A = (3296) has no inverse.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>A = (3amp;29amp;6)</p> <p>|A| = |3amp;29amp;6| = -18 + 18 = 0</p> <p>Hence, A<sup>-1</sup> does not exist.</p> <p>&there4; Given matrix has no inverse matrix. <sub>Proved</sub></p>

Q9:

Construct a matrix of order 2×2 whose (ij)th element is given by aij = 2i - 3j.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>a<sub>11</sub> = 2(1) - 3(1) = 2 - 3 = -1</p> <p>a<sub>12</sub>= 2(1) - 3(2) = 2 - 6 = -4</p> <p>a<sub>21</sub>= 2(2) - 3(1) = 4 - 3 = 1</p> <p>a<sub>22</sub>= 2(2) - 3(2) = 4 - 6 = -2</p> <p>&there4; Required matrix = (1amp;41amp;2)<sub>2&times;2 Ans</sub></p> <p></p> <p></p> <p></p>

Q10:

Find the matrix x, y = (3224) and 2x + y = (1032).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>2x + y =(1amp;03amp;2)</p> <p>or, 2x + (3amp;22amp;4) = (1amp;03amp;2)</p> <p>or, 2x =(1amp;03amp;2) -(3amp;22amp;4)</p> <p>or, 2x =(13amp;0232amp;24)</p> <p>or, 2x =(2amp;25amp;2)</p> <p>or, x = (22amp;2252amp;22)</p> <p>&there4; x =(1amp;152amp;1) <sub>Ans</sub></p>

Q11:

Construct a 3×3 matrix A whose elements are given by aij = 3i + 2j.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>a<sub>ij</sub> = 3i + 2j</p> <p>a<sub>11</sub> = 3&times; 1 + 2 &times; 1 = 3 + 2 = 5</p> <p>a<sub>12</sub>= 3&times; 1 + 2 &times; 2= 3 + 4 = 8</p> <p>a<sub>13</sub>= 3&times; 1 + 2 &times; 3 = 3 + 6 = 9</p> <p>a<sub>21</sub> = 3&times; 2 + 2 &times; 1 = 6 + 2 = 8</p> <p>a<sub>22</sub>= 3&times; 2 + 2 &times; 2 = 6 + 4 = 10</p> <p>a<sub>23</sub>= 3&times; 2 + 2 &times; 3 = 6 + 6 = 12</p> <p>a<sub>31</sub> = 3&times; 3 + 2 &times; 1 = 9 + 2 = 11</p> <p>a<sub>32</sub>= 3&times; 3 + 2 &times; 2 = 9 + 4 = 13</p> <p>a<sub>33</sub>= 3&times; 3 + 2 &times; 3 = 9 + 6 = 15</p> <p>&there4; The required matrix is A = [5amp;7amp;98amp;10amp;1211amp;13amp;15] <sub>Ans</sub></p>

Q12:

If A + B = [7025] and A - B = [3003].


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>If:</p> <p>A + B = [7amp;02amp;5] ..................(1)</p> <p>A - B = [3amp;00amp;3]....................(2)</p> <p>Adding (1) and (2), we get:</p> <p>A + B + A - B = [7amp;02amp;5] + [3amp;00amp;3]</p> <p>or, 2A = [10amp;02amp;8]</p> <p>or, 12 &times; 2A = 12 [10amp;02amp;8]</p> <p>&there4; A = [5amp;01amp;4]</p> <p>Now,</p> <p>From (1)</p> <p>A + B =[7amp;02amp;5]</p> <p>or,[5amp;01amp;4] + B=[7amp;02amp;5]</p> <p>or, B =[7amp;02amp;5] -[5amp;01amp;4]</p> <p>or, B =[75amp;0021amp;54]</p> <p>&there4; B =[2amp;01amp;1]</p>

Q13:

If A = [3520] and B = [1403], find the determinant of 2AT - 3BT.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = [3amp;52amp;0] and B = [1amp;40amp;3]</p> <p>A<sup>T</sup> =[3amp;25amp;0] and B =[1amp;04amp;3]</p> <p>Now,</p> <p>2A<sup>T</sup> - 3B<sup>T</sup> = 2 [3amp;25amp;0] - 3[1amp;04amp;3]</p> <p>=[6amp;410amp;0] -[3amp;012amp;9]</p> <p>=[6+3amp;401012amp;0+9]</p> <p>=[9amp;422amp;9]</p> <p>Again,</p> <p>|2AT3BT| =|9amp;422amp;9| = 81 + 88 = 169 <sub>Ans</sub></p>

Q14:

Define inverse of a matrix with example.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Two matrices A and B are said to be inverse to each other, if AB = I = BA then B is the inverse of A. i.e. A<sup>-1</sup> = B. Similarly, A is called the inverse of B i.e. B<sup>-1</sup> = A.</p>

Q15:

If A = (1x01) , B = (3254) and determinant of A2 - BT = 8, find the value of x.  


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>A = (1amp;x0amp;1) , B =(3amp;25amp;4)</p> <p>A<sup>2</sup> - B<sup>T</sup></p> <p>=(1amp;x0amp;1) .(1amp;x0amp;1) -(3amp;52amp;4)</p> <p>=(1+0amp;x+x0+0amp;0+1) -(3amp;52amp;4)</p> <p>=(1amp;2x0amp;1) -(3amp;52amp;4)</p> <p>=(2amp;2x+52amp;3)</p> <p>Now,</p> <p>|2amp;2x+52amp;3| = 8</p> <p>or, 6 + 4x + 10 = 8</p> <p>or, 4x = 8 - 16</p> <p>or, x = 84</p> <p>&there4; x = -2 <sub>Ans</sub></p>

Q16:

If (2x+3y23zy) = (58124034) (72), find the value of x, y and z.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>(2x+3y23zy) = (5amp;812amp;403amp;4)(72)</p> <p>or,(2x+3y23zy) = (3516848021+8) = (19413)</p> <p>Taking the corresponding elements of the equal matrix</p> <p>2x + 3 = 19</p> <p>or, 2x = 19 - 3</p> <p>or, x = 162</p> <p>&there4; x = 8</p> <p>y - 2 = 4</p> <p>or, y = 4 + 2</p> <p>&there4; y = 6</p> <p>3z - 1 = - 13</p> <p>or, 3z = - 13 + 1</p> <p>or, z = 123</p> <p>&there4; z = -4</p> <p>&there4; x = 8, y = 6 and z = -4 <sub>Ans</sub></p>

Q17:

Define the transpose of a matrix.If A = (135247), find AT.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>A matrix obtained by interchanging rows and columns of the given matrix is called transpose of the matrix.</p> <p>A = (1amp;3amp;52amp;4amp;7)</p> <p>A<sup>T</sup> =A = (1amp;23amp;45amp;7) <sub>Ans</sub></p>

Q18:

If (xy) = (3546) (12), find the value of x and y.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>(xy) = (3amp;54amp;6)(12)</p> <p>or,(xy) =(3+104+12)</p> <p>or,(xy) =(1316)</p> <p>&there4; x = 13 and y = 16 <sub>Ans</sub></p>

Q19:

Find the value of (xy). If (1002) (xy)(24).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>(1amp;00amp;2)(xy) =(24)</p> <p>or,(x+002) =(24)</p> <p>or,(x2y) =(24)</p> <p>Taking corresponding elements of the equal matrix</p> <p>-x = -2</p> <p>&there4; x = 2</p> <p>-2y = 4</p> <p>or, y = 42</p> <p>&there4; y = -2</p> <p>&there4; x = 2 &amp; y = -2 <sub>Ans</sub></p>

Q20:

Find the value of x and y: (113y) (x1)(41).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>(1amp;13amp;y) (x1) =(41)</p> <p>or, (x+13x+y) =(41)</p> <p>Taking corresponding elements of the equal matrix:</p> <p>x + 1 = 4</p> <p>or, x = 4 -1</p> <p>&there4; x = 3</p> <p>3x + y = 1</p> <p>or, 3 &times; 3 + y = 1</p> <p>or, 9 + y = 1</p> <p>or, y = 1 - 9</p> <p>&there4; y = -8</p> <p>&there4; x = 2 and y = -8 <sub>Ans</sub></p>

Q21:

If A = (3425) and B = (2113), find the determinant of 3A - 4B.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Given matrix A = (3amp;42amp;5) and B =(2amp;11amp;3)</p> <p>3A - 4B = 3(3amp;42amp;5) - 4(3amp;42amp;5)</p> <p>=(9amp;126amp;15) +(8amp;44amp;12)</p> <p>=(98amp;1246+4amp;1512)</p> <p>=(1amp;82amp;3)</p> <p>|3A4B|</p> <p>=|1amp;82amp;3|</p> <p>= 1&times; 3 - 8 (-2)</p> <p>= 3 + 16</p> <p>= 19 <sub>Ans</sub></p>

Q22:

If P = (1111) and Q = (2314); find the determinant of PQ.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>P = (1amp;11amp;1) and Q =(2amp;31amp;4)</p> <p>PQ = (1times;2+1times;1amp;1times;3+4times;11times;2+1times;1amp;1times;3+1times;4  )</p> <p>=(21amp;342+1amp;3+4)</p> <p>=(1amp;11amp;1)</p> <p>|PQ| =|1amp;11amp;1|</p> <p>= -1&times; 1 - (-1)&times; (-1)</p> <p>= 1 -1</p> <p>= 0 <sub>Ans</sub></p>

Q23:

If P = (1321) and Q = (1234), find the determinant of 2P - 3Q.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>2P - 3Q = 2 (1amp;32amp;1) - 3(1amp;23amp;4)</p> <p>=(2amp;64amp;2) -(3amp;69amp;12)</p> <p>=(23amp;6649amp;2+12)</p> <p>=(1amp;05amp;10)</p> <p>|2P3Q| =|1amp;05amp;10| = -1&times; 10 - (-5)&times; 0 = -10 + 0 = -10 <sub>Ans</sub></p>

Q24:

If P = (2013) and Q = (2462), find the determinant of 5P - 12Q + 2I.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>P = (2amp;01amp;3), Q = (2amp;46amp;2) and I = (1amp;00amp;1)</p> <p>5P - 12Q + 2I = 5 (2amp;01amp;3) - 12(2amp;46amp;2) +2 (1amp;00amp;1) = (10amp;05amp;15) - (1amp;23amp;1) + (2amp;00amp;2) = (12amp;05amp;17) - (1amp;23amp;1) = (11amp;22amp;16)</p> <p>|5P(12)Q+2I| =|11amp;22amp;16| = 16&times; 11 - (-2)&times; (-2) = 176 - 4 = 172 <sub>Ans</sub></p> <p></p>

Q25:

If A = (3560) and B = (186123) find the determinant of 3A - 13B.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = (3amp;56amp;0) and B =(18amp;612amp;3)</p> <p>3A - 13B</p> <p>= 3(3amp;56amp;0) - 13(18amp;612amp;3)</p> <p>=(9amp;1518amp;0) -(6amp;24amp;1)</p> <p>= (96amp;15+2184amp;01)</p> <p>=(3amp;1722amp;1)</p> <p>|3A(13)B| =(3amp;1722amp;1) = -3 +374 = 371 <sub>Ans</sub></p>

Q26:

Which matrix multiplies to the matrix(1134) to get a matrix(4562)?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Let: M =(aamp;cbamp;d)</p> <p>(aamp;cbamp;d)(1amp;13amp;4) =(4amp;56amp;2)</p> <p>or,(atimes;1+ctimes;3amp;atimes;1+ctimes;4btimes;1+dtimes;3amp;btimes;1+dtimes;4) =(4amp;56amp;2)</p> <p>or,(a+3camp;a+4cb+3damp;b+4d) =(4amp;56amp;2)</p> <p>Equating both sides,</p> <p>a + 3c = 4</p> <p>or, a = 4 - 3c .........................(1)</p> <p>a + 4c = 5................................(2)</p> <p>Putting the value of a in equation (2)</p> <p>4 - 3c + 4c = 5</p> <p>or, 4 + c = 5</p> <p>or, c = 5 - 4</p> <p>&there4; c = 1</p> <p>Putting the value of c in equation (1)</p> <p>&there4; a = 4 - 3c = 4 - 3&times; 1 = 4 - 3 = 1</p> <p>b + 3d = 6</p> <p>b = 6 - 3d..........................(3)</p> <p>b + 4d = 2.........................(4)</p> <p>Putting the value of b in equation (4)</p> <p>6 - 3d + 4d = 2</p> <p>or, 6 + d = 2</p> <p>or, d = 2 - 6</p> <p>&there4; d = -4</p> <p>Puting the value of d in equation (3)</p> <p>&there4; b = 6 - 3 &times; (-4) = 6 + 12 = 18</p> <p>&there4; (aamp;bcamp;d) = (1amp;118amp;4) <sub>Ans</sub></p>

Q27:

If A = (1403) and B = (3520) find the determinant of 2AT - 3BT.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = (1amp;40amp;3) and B =(3amp;52amp;0)</p> <p>A<sup>T</sup> =(1amp;04amp;3) and B<sup>T</sup> =(3amp;25amp;0)</p> <p>2A<sup>T</sup> - 3B<sup>T</sup></p> <p>= 2(1amp;04amp;3) - 3(3amp;25amp;0)</p> <p>=(2amp;08amp;6) - (9amp;615amp;0)</p> <p>=(29amp;06815amp;60)</p> <p>=(11amp;67amp;6)</p> <p>|2AT3BT| =|11amp;67amp;6| = -11 &times;(-6) - (-7) &times;(-6) = 66 - 42 = 24 <sub>Ans</sub></p> <p></p>

Q28:

If P = (3012)  and Q =  (1234), find the determinant of 5P - 2Q - 3I.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>P = (3amp;01amp;2) and Q = (1amp;23amp;4) and I =(1amp;00amp;1)</p> <p>5P - 2Q - 3I</p> <p>= 5 (3amp;01amp;2) - 2(1amp;23amp;4) -3(1amp;00amp;1)</p> <p>=(15amp;05amp;10) -(2amp;46amp;8) -(3amp;00amp;3)</p> <p>=(1523amp;0(4)0560amp;1083)</p> <p>=(20amp;41amp;21)</p> <p>|5P2Q3I| =|20amp;41amp;21| = -20 &times; (-21) - 4 &times; (-1) = 420 + 4 = 424 <sub>Ans</sub></p>

Q29:

If M = [3212] and N = [1341], find the determinant of 2M + 3N.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>M = [3amp;21amp;2] and N = [1amp;34amp;1]</p> <p>2M + 3N</p> <p>= 2[3amp;21amp;2] + 3[1amp;34amp;1]</p> <p>=[6amp;42amp;4] +[3amp;912amp;3]</p> <p>=[6+3amp;4+92+12amp;43]</p> <p>=[9amp;514amp;1]</p> <p>|2M+3N| =[9amp;514amp;1] = 9&times; 1 - 5&times; 14 = 9 - 70 = -61 <sub>Ans</sub></p>

Q30:

If P = (1231) and Q = (3421), find the determinant of 3P - 2Q.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>P = (1amp;23amp;1) and Q =(3amp;42amp;1)</p> <p>3P - 2Q</p> <p>= 3 (1amp;23amp;1) - 2 (3amp;42amp;1)</p> <p>= (3amp;6 9amp;3) -(6amp;84amp;2)</p> <p>=(36amp;6+894amp;32)</p> <p>=(3amp;25amp;5)</p> <p>|3P2Q| =(3amp;25amp;5) = -3&times; (-5) - 5&times; 2 = 15 - 10 = 5 <sub>Ans</sub></p>

Q31:

If A = (46x3), B = (4578) and the determinant of A - B - 5I is 14, calculate the value of x.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = (4amp;6xamp;3) and B = (4amp;57amp;8) and I =(1amp;00amp;1)</p> <p>Now,</p> <p>A - B - 5I</p> <p>=(4amp;6xamp;3) -(4amp;57amp;8) - 5(1amp;00amp;1)</p> <p>=(4(4)amp;65x7amp;38) -(5amp;00amp;5)</p> <p>=(8amp;1x7amp;5) -(5amp;00amp;5)</p> <p>=(85amp;10x70amp;55)</p> <p>=(3amp;1x7amp;10)</p> <p>We have,</p> <p>|AB2I| = 14</p> <p>or,|3amp;1x7amp;10| = 14</p> <p>or, 3&times; -10 - 1&times; (x-7) = 14</p> <p>or, -30 - x + 7 = 14</p> <p>or, -x = 14 - 7 + 30</p> <p>or, -x = 37</p> <p>&there4; x = -37 <sub>Ans</sub></p> <p></p>

Q32:

If the inverse of matrix A = (120x)  and B = (14y2), determine the values of x and y.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = (1amp;20amp;x) and B =(1amp;4yamp;2)</p> <p>If A and B are inverse matrix, then</p> <p>AB = I, where I =(1amp;00amp;1)</p> <p>or,(1amp;20amp;x)(1amp;4yamp;2) =(1amp;00amp;1)</p> <p>or,(1times;1+ytimes;(2)amp;1times;4+2times;(2)0times;1+ytimes;xamp;0times;4+2times;x) =(1amp;00amp;1)</p> <p>or,(2y+1amp;0xyamp;2x) =(1amp;00amp;1)</p> <p>Taking corresponding elements:</p> <p>-2y + 1 = 1</p> <p>or, -2y = 1 - 1</p> <p>or, y = 02</p> <p>&there4; y = 0</p> <p>Similarly,</p> <p>2x = 1</p> <p>&there4; x= 12</p> <p>&there4; x = 12 and y = 0 <sub>Ans</sub></p>

Q33:

If A = (7432) then find A-1.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Given,</p> <p>A = (7amp;43amp;2)</p> <p>|A| = |7amp;43amp;2| = 7&times; 2 - 4&times; 3 = 14 - 12 = 2&ne; 0.</p> <p>It is possible to find A<sup>-1</sup>.</p> <p>A<sup>-1</sup> = 1|A| Adj (A)</p> <p>A = 1|A| (2amp;43amp;7) = 12(2amp;43amp;7) = ((22)amp;(42)(32)amp;(72)) =(1amp;2(32amp;(72))</p> <p>&there4; A<sup>-1</sup> =(1amp;2(32amp;(72)) <sub>Ans</sub></p>

Q34:

If the inverse of the matrix (2m759) is the matrix (9n54). Calculate the value of m and n.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Let:</p> <p>A =(2mamp;75amp;9) and A<sup>-1</sup>=(9amp;n5amp;4)</p> <p>We know that,</p> <p>AA<sup>-1</sup> = I, where I =(1amp;00amp;1)</p> <p>or,(2mamp;75amp;9) (9amp;n5amp;4) =(1amp;00amp;1)</p> <p>or,(18m35amp;2mn+284545amp;5n+36) =(1amp;00amp;1)</p> <p>or,(18m35amp;2mn+280amp;5n+36) =(1amp;00amp;1)</p> <p>Taking the corresponding elements both sides</p> <p>18m - 35 = 1</p> <p>or, 18 m = 1 + 35</p> <p>or, m = 3618</p> <p>&there4; m = 2</p> <p>5n + 36 = 1</p> <p>or, 5n = 1 - 36</p> <p>or, n = 355</p> <p>&there4; n = -7</p> <p>&there4; m = 2 and n = -7 <sub>Ans</sub></p>

Q35:

If |x1x2xx3| = 0, find the value of x.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>|x1amp;x2xamp;x3| = 0</p> <p>or, (x - 1) (x - 3) - x(x - 2) = 0</p> <p>or, x<sup>2</sup> - 4x + 3 - x<sup>2</sup> + 2x = 0</p> <p>or, - 2x + 3 = 0</p> <p>or, 2x = 3</p> <p>&there4; x = 32 <sub>Ans</sub></p>

Q36:

If A = [3542] show that A2 - 5A = 14I, where I is an identity matrix.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = [3amp;54amp;2]</p> <p>L.H.S. = A<sup>2</sup> - 5A = A&times; A - 5&times; A</p> <p>= [3amp;54amp;2]&times; [3amp;54amp;2] - 5 [3amp;54amp;2]</p> <p>= [3times;3+(5)times;(4)amp;3times;(5)+(5)times;24times;3+2times;(4)amp;4times;(5)+2times;2] + [5times;3amp;5times;(5)5times;(4)amp;5times;2]</p> <p>= [9+20amp;1510128amp;20+4] + [15amp;2520amp;10]</p> <p>= [29amp;2520amp;24] + [15amp;2520amp;10]</p> <p>= [2915amp;25+2520+20amp;2410]</p> <p>= [14amp;00amp;14]</p> <p>= 14 [1amp;00amp;1]</p> <p>= 14I <sub>Ans</sub></p>

Q37:

If the inverse of the matrix (x2x9y3) is the matrix (35yx). Find the value of x and y.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>We know that,</p> <p>(xamp;2x9yamp;3)(3amp;5yamp;x) = I where I =(1amp;00amp;1)</p> <p>or,(3x+y(2x9)amp;5x+x(2x9)3y+3yamp;5y+3x) =(1amp;00amp;1)</p> <p>or,(3x+2xy9yamp;5x+2x29x0amp;5y+3x) =(1amp;00amp;1)</p> <p>or,(3x+2xy9yamp;2x24x0amp;3x5y) =(1amp;00amp;1)</p> <p>Taking the corresponding element of the equal matrix</p> <p>2x<sup>2</sup> - 4x = 0</p> <p>2x(x - 2) = 0</p> <p>Either: 2x = 0 &there4;x = 0</p> <p>Or, x - 2 = 0 &there4;x = 2</p> <p>3x - 5y = 1</p> <p>or, 3x - 1 = 5y</p> <p>or, y = 3x15</p> <p>If x = 0 then y = \frac {3 &times; 0 - 1}{5} = -15</p> <p>If x = 2 then y =\frac {3 &times; 2 - 1}{5} = 1</p> <p>&there4; x = 0 or 2</p> <p>y = -15 or 1 <sub>Ans</sub></p>

Q38:

if I is the unit matrix of order 2×2  and 3A - 4I = 5(1201) then find the matrix A.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>3A - 4I = 5(1amp;20amp;1)</p> <p>or, 3A - 4(1amp;00amp;1) =(5amp;100amp;5)</p> <p>or, 3A -(4amp;00amp;4) =(5amp;100amp;5)</p> <p>or, 3A =(5amp;100amp;5) +(4amp;00amp;4)</p> <p>or, 3A = (5+4amp;10+00+0amp;5+4) </p> <p>or, 3A =(9amp;100amp;1)</p> <p>or, A = ((93)amp;(103)(03)amp;(13))</p> <p>&there4; A =(3amp;(103)0amp;(13)) <sub>Ans</sub></p> <p></p>

Q39:

If A = (3512), find the determinant of A2 + 5A-1 - 14I, where I is a 2×2 matrix.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A =(3amp;51amp;2) and I =(1amp;00amp;1)</p> <p>A<sup>2</sup> + 5A<sup>-1</sup> - 14I</p> <p>=(3amp;51amp;2)&sdot;(3amp;51amp;2) + 5(3amp;51amp;2)<sup>-1</sup> -14(1amp;00amp;1)</p> <p>=(9+5amp;15+103+2amp;5+4) + 565(2amp;51amp;3) -(14amp;00amp;14)</p> <p>=(14amp;255amp;9) +(10amp;255amp;15) -(14amp;00amp;14)</p> <p>=(24amp;00amp;24) -(14amp;00amp;14)</p> <p>=(10amp;00amp;10)</p> <p>|A2+5A114A| =|10amp;00amp;10| = 100 - 0 = 100 <sub>Ans</sub></p>

Q40:

If A = (4211) prove that A2 - 5A + 6I = 0 where I is an 2×2 unit matrix.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = (4amp;21amp;1), I = (1amp;00amp;1)</p> <p>L.H.S.</p> <p>= A<sup>2</sup> - 5A + 6I</p> <p>= (4amp;21amp;1)&sdot; (4amp;21amp;1) - 5 (4amp;21amp;1) + 6 (1amp;00amp;1)</p> <p>= (162amp;8+241amp;2+1) - (20amp;105amp;5) + (6amp;00amp;6)</p> <p>= (14amp;105amp;1) - (20amp;105amp;5) + (6amp;00amp;6)</p> <p>= (1420+6amp;1010+05+5+0amp;15+6)</p> <p>= (0amp;00amp;0)</p> <p>= 0</p> <p>= R.H.S <sub>Proved</sub></p> <p></p>

Q41:

if A-1 = (41313), find the matrix A.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A<sup>-1</sup> =(4amp;131amp;3)</p> <p>Adj1 (A) =(3amp;113amp;4)</p> <p>|A| = -12 + 13 = 1</p> <p>A = 1|A| Adj.(A) = 11(3amp;131amp;4) =(3amp;131amp;4) <sub>Ans</sub></p>

Q42:

If M = (4005), find a matrix P such that MP = (1224).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Let:</p> <p>P = (aamp;bcamp;d)</p> <p>MP =(1amp;22amp;4)</p> <p>or,(4amp;00amp;5)&sdot;(aamp;bcamp;d) =(1amp;22amp;4)</p> <p>or,(4a+0amp;4b+00+5camp;0+5d) =(1amp;22amp;4)</p> <p>or,(4aamp;4b5camp;5d) =(1amp;22amp;4)</p> <p>Taking corresponding elements of the equal matrix:</p> <p>4a = 1</p> <p>&there4; a = 14</p> <p>4b = 2</p> <p>&there4; b = 12</p> <p>5c = 2</p> <p>&there4; c = 25</p> <p>5d = 4</p> <p>&there4; d = 45</p> <p>&there4; P =(14amp;1225amp;45) <sub>Ans</sub></p>

Q43:

Define inverse of a matrix. Find the inverse A-1 to matrix A if A = (2134).


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Two matrices A and B are said to be inverse to each other, if AB = I = BA then B is the inverse of A. i.e. A<sup>-1</sup> = B. Similarly, A is called the inverse of B i.e. B<sup>-1</sup> = A.</p> <p>A =(2amp;13amp;4)</p> <p>A<sup>-1</sup>= 1|A| Adj.(A)</p> <p>|A| =|2amp;13amp;4| = 8 - 3 = 5</p> <p>A<sup>-1</sup> = 15(4amp;13amp;2) =(45amp;1535amp;25) <sub>Ans</sub></p>

Q44:

If A = (1153) find the A-1.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A =(1amp;15amp;3)</p> <p>|A| =|1amp;15amp;3| = 3 - 5 = -2</p> <p>A<sup>-1</sup>=1|A| Adj.(A)</p> <p>= 12|3amp;15amp;1|</p> <p>=(32amp;1252amp;12) <sub>Ans</sub></p>

Q45:

Solve by matrix method: 

4x - 3y = 11

3x + 7y = -1


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>4x - 3y = 11..........................................(1)</p> <p>3x + 7y = -1..........................................(2)</p> <p>Given equations in matrix form:</p> <p>(4amp;33amp;7)(xy) =(111)</p> <p>We know,</p> <p>AX = B</p> <p>where. A =(4amp;33amp;7), X =(xy) and B =(111)</p> <p>|A| =|4amp;33amp;7| = 7&times; 4 - 3&times; -3 = 28 + 9 = 37&ne; 0</p> <p>Hence, it has unique solution.</p> <p>X = A<sup>-1</sup>B where A<sup>-1</sup> =1|A| Adj.(A) = 137(7amp;33amp;4)</p> <p>X = A<sup>-1</sup>B = 137(7amp;33amp;4)(111)</p> <p>= 137(77amp;333amp;4)</p> <p>= 137(7437)(74373737)</p> <p>= (21)</p> <p>&there4; x = 2 and y = -1 <sub>Ans</sub></p> <p></p>

Q46:

Solve by matrix method:

2x + 3y - 18 = 0

3x - 2y - 1 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = 18......................(1)</p> <p>3x - 2y = 1 .........................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;33amp;2)(xy) = (181), AX = B</p> <p>where, A =(2amp;33amp;2), X =(xy) and B =(181)</p> <p>|A| =|2amp;33amp;2| = 2&times; (-2) - 3&times; 3 = -4 - 9 = -13&ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj.A =(2amp;33amp;2)</p> <p>X = A<sup>-1</sup>B</p> <p>or, X = 113(2amp;33amp;2)(181)</p> <p>or, X = 113(2times;18+1times;33times;18+2times;1)</p> <p>or, X = 113(36354+2)</p> <p>or, X =(39135213)</p> <p>or, X =(34)</p> <p>&there4; x = 3 and y = -4 <sub>Ans</sub></p>

Q47:

Solve by matrix method:

3x - 2y = 5

x + y = 5


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>3x - 2y = 5 ......................(1)</p> <p>x + y = 5 ...........................(2)</p> <p>Given equation in matrix form:</p> <p>(3amp;21amp;1)(xy) =(55)</p> <p>We know, AX = B</p> <p>where, A =(3amp;21amp;1), X =(xy) and B =(55)</p> <p>|A| =|3amp;21amp;1| = 3&times; 1 -1&times; -2 = 5&ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj. A = 15(1amp;21amp;3) =(15amp;2515amp;35)</p> <p>X = A<sup>-1</sup>B =(15amp;2515amp;35)(55) =(1+21+3) =(32)</p> <p>&there4; x = 3 and y = 2 <sub>Ans</sub></p>

Q48:

Solve by matrix method:

3x + 5y = 21

2x + 3y = 13


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>3x + 5y = 21................................(1)</p> <p>2x + 3y = 13................................(2)</p> <p>Given equation in matrix form:</p> <p>(3amp;52amp;3)(xy) =(2113)</p> <p>We know, AX = B</p> <p>where, A =(3amp;52amp;3), X =(xy) and B =(2113)</p> <p>|A| =|3amp;52amp;3| = 3&times; 3 - 5&times; 2 = 9 -10 = -1&ne; 0</p> <p>It has a unique solution.</p> <p>X = A<sup>-1</sup>B</p> <p>A<sup>-1</sup>=1|A| Adj. A = 11(3amp;52amp;3) =(3amp;52amp;3)</p> <p>X = A<sup>-1</sup>B</p> <p>=(3amp;52amp;3)(2113)</p> <p>=(63+654239)</p> <p>= (23)</p> <p>&there4; x = 2 and y = 3 <sub>Ans</sub></p> <p></p> <p></p>

Q49:

Solve by matrix method:

2x + 3y = 5

5x - 2y = 3


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = 5.........................(1)</p> <p>5x - 2y = 3..........................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;35amp;2) (xy) =(53) or, AX = B</p> <p>where, A =(2amp;35amp;2), X =(xy) and B =(53)</p> <p>|A| =|2amp;35amp;2| = -4 - 15 = -19&ne; 0</p> <p>It has a unique solution.</p> <p>X = A<sup>-1</sup>B</p> <p>A<sup>-1</sup>=1|A| Adj. A = 119(2amp;35amp;2)</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =119(2amp;35amp;2)(53)</p> <p>or, X =119(10925+6)</p> <p>or, X =(19191919)</p> <p>&there4; X =(11)</p> <p>&there4; x = 1 and y = 1 <sub>Ans</sub></p>

Q50:

Solve by matrix method:

3x- 5y = 3

4x + 3y = 4


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>3x - 5y = 3..........................(1)</p> <p>4x + 3y = 4.........................(2)</p> <p>Given equation in matrix form;</p> <p>(3amp;54amp;3)(xy) =(34) or, AX = B</p> <p>where, A = (3amp;54amp;3), X =(xy) and B =(34)</p> <p>|A| =|3amp;54amp;3| = 9 + 20 = 29&ne; 0</p> <p>It has a unique solution.</p> <p>X = A<sup>-1</sup>B</p> <p>X =1|A|(3amp;54amp;3)(34)</p> <p>or, X = 129 (3times;3+5times;44times;3+3times;4)</p> <p>or, X = 129 (9+2012+12)</p> <p>or, X = 129 (290)</p> <p>or, X =(2929029)</p> <p>&there4; X =(10)</p> <p>&there4; x = 1 and y = 0 <sub>Ans</sub></p>

Q51:

Solve by matrix method:

2x + y = 3

3x + 2y = 2


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>2x + y = 3..................(1)</p> <p>3x + 2y = 2...............(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;13amp;2)(xy) =(32), AX = B</p> <p>where, A =(2amp;13amp;2), X =(xy) and B =(32)</p> <p>|A| =|2amp;13amp;2| = 2 &times; 2 - 3 &times; 1 = 4 - 3 = 1 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj. A = 11 (2amp;13amp;2)</p> <p>=(2amp;13amp;2)</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(2amp;13amp;2)(32)</p> <p>or, X =(2times;31times;23times;3+2times;2)</p> <p>or, X =(629+4)</p> <p>&there4; X = (45)</p> <p>&there4; x = 4 and y = -5 <sub>Ans</sub></p>

Q52:

Given: A = [ab0c], B = [2003] and AB = A + B, find the values of a, b and c.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A = [aamp;b0amp;c] and B =[2amp;00amp;3]</p> <p>AB =[aamp;b0amp;c][2amp;00amp;3] =[atimes;2+btimes;0amp;atimes;0+btimes;30times;2+ctimes;0amp;0times;0+ctimes;3] =[2aamp;3b0amp;3c]</p> <p>A + B =[aamp;b0amp;c] +[2amp;00amp;3] =[a+2amp;b0amp;c+3]</p> <p>From Question,</p> <p>[2aamp;3b0amp;3c] =[a+2amp;b0amp;c+3]</p> <p>Taking the corresponding elements of the equal matrix,</p> <p>a + 2 = 2a</p> <p>or, 2a - a = -2</p> <p>&there4; a = -2</p> <p>3b = b</p> <p>or, 3b - b = 0</p> <p>or, 2b = 0</p> <p>&there4; b = 0</p> <p>3c = c + 3</p> <p>or, 3c - c = 3</p> <p>or, 2c = 3</p> <p>&there4; c = 32</p> <p>&there4; a = 2, b = 0 and c = 32 <sub>Ans</sub></p>

Q53:

Solve by matrix method:

2x + 3y + 4 = 0

-5x + 4y + 13 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = -4....................................(1)</p> <p>-5x + 4y = -13...............................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;35amp;4)(xy) =(413), AX = B</p> <p>where, A =(2amp;35amp;4), X =(xy) and B =(413)</p> <p>|A| =|2amp;35amp;4| = 2 &times; 4 - (-5) &times; 3 = 8 + 15 = 23 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj. A = 123 (4amp;35amp;2) =(423amp;323523amp;223)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(423amp;323523amp;223)(413)</p> <p>or, X =(1623+392320232623)</p> <p>or, X = (16+3923202623)</p> <p>or, X = (23234623)</p> <p>&there4; X =(12 )</p> <p>&there4; x = 1 and y = -2<sub>Ans</sub></p> <p></p>

Q54:

Solve the following given equations by matrix method:

4x + 3y = 5

y - 3x = -7


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>4x + 3y = 5.........................................(1)</p> <p>y - 3x = -7...........................................(2)</p> <p>Given equation in matrix form:</p> <p>(4amp;33amp;1)(xy) =(57), AX =B</p> <p>where, A =(4amp;33amp;1), X =(xy) and B =(57)</p> <p>|A| =|4amp;33amp;1| = 4 &times; 1 - 3 &times; -3 = 4 + 9 = 13 &ne; 0</p> <p>It has unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj.A = 113(1amp;33amp;4) =(113amp;313313amp;413)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(113amp;313313amp;413)(57)</p> <p>or, X =(513+211315132813)</p> <p>or, X =(5+2113152813)</p> <p>or, X =(26131313)</p> <p>&there4; X =(21)</p> <p>&there4; x = 2 and y = -1 <sub>Ans</sub></p>

Q55:

Solve the given equation by matrix method:

2x - y = 1

2y + x = 3


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>2x - y = 1...............................(1)</p> <p>x + 2y = 3..............................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;11amp;2)(xy) =(13), AX = B</p> <p>where, A =(2amp;11amp;2), X = (xy) and B =(13)</p> <p>|A| =|2amp;11amp;2| = 2 &times; 2 - 1 &times; -1 = 4 + 1 = 5 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 15(2amp;11amp;2) =(25amp;1515amp;25)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(25amp;1515amp;25)(13)</p> <p>or, X =(25+3515+65)</p> <p>or, X =(2+351+65)</p> <p>or, X =(5555)</p> <p>&there4; X =(11)</p> <p>&there4; x = 1 and y = 1 <sub>Ans</sub></p>

Q56:

Solve by matrix method:

x + 2y = 8

2x + 3y = 11


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>x + 2y = 8........................................(1)</p> <p>2x + 3y = 11..................................(2)</p> <p>Given equation in matrix form:</p> <p>(1amp;22amp;3)(xy) =(811) , AX = B</p> <p>where, A =(1amp;22amp;3), X =(xy) and B =(811)</p> <p>|A| =|1amp;22amp;3| = 1 &times; 3 - 2 &times; 2 = 3 - 4 = -1 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 11(3amp;22amp;1) = (3amp;22amp;1)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(3amp;22amp;1)(811)</p> <p>or, X =(24+221611)</p> <p>&there4; X =(25)</p> <p>&there4; x = -2 and y = 5 <sub>Ans</sub></p>

Q57:

Solve by matrix method:

2x + 3y = 5

2y - 3x = - 1


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = 5...........................(1)</p> <p>-3x + 2y = -1.......................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;33amp;2)(xy) =(51), AX = B</p> <p>where, A =(2amp;33amp;2), X =(xy) and B =(51)</p> <p>|A| =|2amp;33amp;2| = 2 &times; 2 - (-3) &times; 3 = 4 + 9 = 13 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 113(2amp;33amp;2)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =113(2amp;33amp;2)(51)</p> <p>or, X = 113(10+3152)</p> <p>or, X = 113(1313)</p> <p>or, X =(13131313)</p> <p>&there4; X = (11)</p> <p>&there4; x = 1 and y = 1 <sub>Ans</sub></p>

Q58:

Solve by matrix method:

3x + y = 51

4x - 3y = 3


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Given equation:</p> <p>3x + y = 51...........................(1)</p> <p>4x - 3y = 3............................(2)</p> <p>Given equation in matrix form:</p> <p>(3amp;14amp;3)(xy) =(513), AX = B</p> <p>where, A =(3amp;14amp;3), X = (xy) and B =(513)</p> <p>|A| =|3amp;14amp;3| = 3 &times; (-3) - 4 &times; 1 = -9 - 4 = -13 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 113(3amp;14amp;3) =(313amp;113413amp;313)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(313amp;113413amp;313)(513)</p> <p>or, X =(15313amp;31320413amp;913)</p> <p>or, X =(153+313204913)</p> <p>or, X =(1561319513)</p> <p>&there4; X =(125)</p> <p>&there4; x = 12 and y = 5 <sub>Ans</sub></p> <p></p>

Q59:

Solve by matrix method:

2x - 5y = 1

7x + 3y = 24


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>2x - 5y = 1.................................(1)</p> <p>7x + 3y = 24.............................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;57amp;3)(xy) =(124), AX = B</p> <p>where, A =(2amp;57amp;3), X =(xy) and B =(124)</p> <p>|A| =|2amp;57amp;3| = 2 &times; 3 - 7 &times; (-5) = 6 + 35 = 41 &ne; 0 </p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 141(3amp;57amp;2) =(341amp;541741amp;241)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(341amp;541741amp;241)(124)</p> <p>or, X =\begin {pmatrix} \frac {3 &times; 1}{41} &amp; \frac {5 &times; 24}{41}\\ \frac {-7 &times; 1}{41} &amp; \frac {2 &times; 24}{41}\\ \end {pmatrix}</p> <p>or, X =(341amp;12041741amp;4841)</p> <p>or, X =(3+120417+4841)</p> <p>or, X =(123414141)</p> <p>&there4; X =|31|</p> <p>&there4; x = 3 and y = 1 <sub>Ans</sub></p> <p></p>

Q60:

Solve by matrix method;

x - 8y = 39 

2x - 3y - 13 = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>x - 8y = 39..........................................(1)</p> <p>2x - 3y = 13.......................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 1 &amp; -8\\ 2 &amp; -3\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 39\\ 13\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 1 &amp; -8\\ 2 &amp; -3\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 39\\ 13\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 1 &amp; -8\\ 2 &amp; -3\\ \end {vmatrix} = 1 &times; (-3) - 2 &times; (-8) = -3 + 16 = 13 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{13}\begin {pmatrix} -3 &amp; -8\\ -2 &amp; 1\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX =B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\frac {1}{13}\begin {pmatrix} -3 &amp; -8\\ -2 &amp; 1\\ \end {pmatrix}\begin {pmatrix} 39\\ 13\\ \end {pmatrix}</p> <p>or, X = \frac {1}{13}\begin {pmatrix} -117 + 104\\ -78 + 13\\ \end {pmatrix}</p> <p>or, X = \frac {1}{13}\begin {pmatrix} -13\\ -65\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {-13}{13}\\ \frac {-65}{13}\\ \end {pmatrix}</p> <p>&there4; X = \begin {pmatrix} -1\\ -5\\ \end {pmatrix}</p> <p>&there4; x = -1 and y = -5 <sub>Ans</sub></p>

Q61:

Solve by matrix method:

\frac 2x + \frac 3y = 2

\frac 4x - \frac 9y = -1


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 2x + \frac 3y = 2..............................................(1)</p> <p>\frac 4x - \frac 9y = -1.............................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 2 &amp; 3\\ 4 &amp; -9\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} =\begin {pmatrix} 2\\ -1\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 2 &amp; 3\\ 4 &amp; -9\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} and B = \begin {pmatrix} 2\\ -1\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 2 &amp; 3\\ 4 &amp; -9\\ \end {vmatrix} = 2 &times; (-9) - 4 &times; 3 = -18 - 12 = -30 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-30}\begin {pmatrix} -9 &amp; -3\\ -4 &amp; 2\\ \end {pmatrix} =\begin {pmatrix} \frac {9}{30} &amp; \frac {3}{30}\\ \frac {4}{30} &amp; \frac {-2}{30}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {9}{30} &amp; \frac {3}{30}\\ \frac {4}{30} &amp; \frac {-2}{30}\\ \end {pmatrix}\begin {pmatrix} 2\\ -1\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {9&times;2}{30} - \frac {3&times;1}{30}\\ \frac {4&times;2}{30} + \frac {2&times;1}{30}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {18-3}{30}\\ \frac {8+2}{30}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {15}{30}\\ \frac {10}{30}\\ \end {pmatrix}</p> <p>&there4; X = \begin {pmatrix} \frac 12\\ \frac 13\\ \end {pmatrix}</p> <p>i.e.\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} =\begin {pmatrix} \frac 12\\ \frac 13\\ \end {pmatrix}</p> <p>Taking the corresponding part of the equal matrix:</p> <p>\frac 1x = \frac 12</p> <p>&there4; x = 2</p> <p>\frac 1y = \frac 13</p> <p>&there4; y = 3</p> <p>&there4; x = 2 and y = 3 <sub>Ans</sub></p>

Q62:

Solve by matrix method:

\frac {3x + 5y}{4} = \frac {7x + 3y}{5} = 4


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>\frac {3x + 5y}{4} =4, \frac {7x + 3y}{5} = 4</p> <p>3x + 5y = 16..............................(1)</p> <p>7x + 3y = 20..............................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 3 &amp; 5\\ 7 &amp; 3\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 16\\ 20\\ \end {pmatrix}, AX =B</p> <p>where, A =\begin {pmatrix} 3 &amp; 5\\ 7 &amp; 3\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 16\\ 20\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 3 &amp; 5\\ 7 &amp; 3\\ \end {vmatrix} = 3 &times; 3 - 7 &times; 5 = 9 - 35 = -26 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-26}\begin {pmatrix} 3 &amp; -5\\ -7 &amp; 3\\ \end {pmatrix}</p> <p>We know that:</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\frac {1}{-26}\begin {pmatrix} 3 &amp; -5\\ -7 &amp; 3\\ \end {pmatrix}\begin {pmatrix} 16\\ 20\\ \end {pmatrix}</p> <p>or, X =\frac {1}{-26}\begin {pmatrix} 48 - 100\\ -112 + 60\\ \end {pmatrix}</p> <p>or, X =\frac {1}{-26}\begin {pmatrix} -52\\ -52\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {-52}{-26}\\ \frac {-52}{-26}\\ \end {pmatrix}</p> <p>&there4; X =\begin {pmatrix} 2\\ 2\\ \end {pmatrix}</p> <p>&there4; x = 2 and y = 2 <sub>Ans</sub></p>

Q63:

Solve the equation by matrix method: x = \frac 23y and 4x - 3y = 1.


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>Given equations are:</p> <p>x = \frac 23y i.e. 3x - 2y = 0................(1)</p> <p>4x - 3y = 1............................(2)</p> <p>Given equation in matrix form;</p> <p>\begin {pmatrix} 3 &amp; -2\\ 4 &amp; -3\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 0\\ 1\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 3 &amp; -2\\ 4 &amp; -3\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 0\\ 1\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 3 &amp; -2\\ 4 &amp; -3\\ \end {vmatrix} = 3 &times; -3 - 4 &times; -2 = -9 + 8 = -1 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-1}\begin {pmatrix} -3 &amp; -2\\ -4 &amp; 3\\ \end {pmatrix} = \begin {pmatrix} 3 &amp; 2\\ 4 &amp; -3\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} 3 &amp; 2\\ 4 &amp; -3\\ \end {pmatrix}\begin {pmatrix} 0\\ 1\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} 3 &times; 0 + 2 &times; 1\\ 4 &times; 0 - 3 &times; 1\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} 0 + 2\\ 0 - 3\\ \end {pmatrix}</p> <p>&there4; X =\begin {pmatrix} 2\\ -3\\ \end {pmatrix}</p> <p>&there4; x = 2 and y = -3 <sub>Ans</sub></p>

Q64:

Solve by matrix method:

\frac 4x + 3y = 11

3xy - 8 - 5x = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 4x + 3y = 11.................................(1)</p> <p>3xy - 8 -5x = 0</p> <p>or, \frac {3xy}{x} - \frac 8x - \frac {5x}{x} = 0</p> <p>or, -\frac 8x + 3y = 5...................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 4 &amp; 3\\ -8 &amp; 3\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 4 &amp; 3\\ -8 &amp; 3\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 4 &amp; 3\\ -8 &amp; 3\\ \end {vmatrix} = 4 &times; 3 - (-8) &times; 3 = 12 + 24 = 36 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{36}\begin {pmatrix} 3 &amp; -3\\ 8 &amp; 4\\ \end {pmatrix} =\begin {pmatrix} \frac {3}{36} &amp; \frac {-3}{36}\\ \frac {8}{36} &amp; \frac {4}{36}\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{12} &amp; \frac {-1}{12}\\ \frac {2}{9} &amp; \frac {1}{9}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{12} &amp; \frac {-1}{12}\\ \frac {2}{9} &amp; \frac {1}{9}\\ \end {pmatrix}\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {11}{12} &amp; \frac {-5}{12}\\ \frac {22}{9} &amp; \frac {5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {11 - 5}{12}\\ \frac {22 + 5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {6}{12}\\ \frac {27}{9}\\ \end {pmatrix}</p> <p>&there4;X = \begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>i.e.\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>Taking the corresponding part of the equal matrix:</p> <p>\frac 1x = \frac 12</p> <p>&there4; x = 2</p> <p>&there4; y = 3</p> <p>&there4; x = 2 and y = 3 <sub>Ans</sub></p> <p></p>

Q65:

Solve by matrix method:

\frac 4x + 3y = 11

3xy - 8 - 5x = 0


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 4x + 3y = 11.................................(1)</p> <p>3xy - 8 -5x = 0</p> <p>or, \frac {3xy}{x} - \frac 8x - \frac {5x}{x} = 0</p> <p>or, -\frac 8x + 3y = 5...................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 4 &amp; 3\\ -8 &amp; 3\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 4 &amp; 3\\ -8 &amp; 3\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 4 &amp; 3\\ -8 &amp; 3\\ \end {vmatrix} = 4 &times; 3 - (-8) &times; 3 = 12 + 24 = 36 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{36}\begin {pmatrix} 3 &amp; -3\\ 8 &amp; 4\\ \end {pmatrix} =\begin {pmatrix} \frac {3}{36} &amp; \frac {-3}{36}\\ \frac {8}{36} &amp; \frac {4}{36}\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{12} &amp; \frac {-1}{12}\\ \frac {2}{9} &amp; \frac {1}{9}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{12} &amp; \frac {-1}{12}\\ \frac {2}{9} &amp; \frac {1}{9}\\ \end {pmatrix}\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {11}{12} &amp; \frac {-5}{12}\\ \frac {22}{9} &amp; \frac {5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {11 - 5}{12}\\ \frac {22 + 5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {6}{12}\\ \frac {27}{9}\\ \end {pmatrix}</p> <p>&there4;X = \begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>i.e.\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>Taking the corresponding part of the equal matrix:</p> <p>\frac 1x = \frac 12</p> <p>&there4; x = 2</p> <p>&there4; y = 3</p> <p>&there4; x = 2 and y = 3 <sub>Ans</sub></p> <p></p>

Q66:

Solve by matrix method:

4x + \frac y5 = 7

3x + \frac y4 = 5


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>4x + \frac y5 = 7</p> <p>or, \frac {20x + y}{5} = 7</p> <p>or, 20x + y = 35.........................................(1)</p> <p>3x + \frac y4 = 5</p> <p>or, \frac {12x + y}{4} = 5</p> <p>or, 12x + y = 20..........................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 20 &amp; 1\\ 12 &amp; 1\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 35\\ 20\\ \end {pmatrix}, AX =B</p> <p>where, A =\begin {pmatrix} 20 &amp; 1\\ 12 &amp; 1\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 35\\ 20\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 20 &amp; 1\\ 12 &amp; 1\\ \end {vmatrix} = 20 &times; 1 - 12 &times; 1 = 20 - 12 = 8 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{8}\begin {pmatrix} 1 &amp; -1\\ -12 &amp; 20\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{8} &amp; \frac {-1}{8}\\ \frac {-12}{8} &amp; \frac {20}{8}\\ \end {pmatrix} = \begin {pmatrix} \frac {1}{8} &amp; \frac {-1}{8}\\ \frac {-3}{2} &amp; \frac {5}{2}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>or, X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{8} &amp; \frac {-1}{8}\\ \frac {-3}{2} &amp; \frac {5}{2}\\ \end {pmatrix}\begin {pmatrix} 35\\ 20\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {35}{8} - \frac {20}{8}\\ \frac {-105}{2} + \frac {100}{2}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {35 - 20}{8}\\ \frac {-105 + 100}{2}\\ \end {pmatrix}</p> <p>&there4; X =\begin {pmatrix} \frac {15}{8}\\ \frac {-5}{2}\\ \end {pmatrix}</p> <p>&there4; x = \frac {15}{2} and y = \frac {-5}{2} <sub>Ans</sub></p> <p></p>

Q67:

Solve by the matrix method:

\frac 3x + \frac 4y = 2

\frac 9x - \frac 2y = \frac 52


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 3x + \frac 4y = 2..........................................(1)</p> <p>\frac 9x - \frac 2y = \frac 52....................(2)</p> <p>Given equation in the form of matrix:</p> <p>\begin {pmatrix} 3 &amp; 4\\ 9 &amp; -2\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} =\begin {pmatrix} 2\\ \frac52\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 3 &amp; 4\\ 9 &amp; -2\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} and B =\begin {pmatrix} 2\\ \frac52\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 3 &amp; 4\\ 9 &amp; -2\\ \end {vmatrix} = 3 &times; (-2) - 9 &times; 4 = -6 - 36 = -42 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-42}\begin {pmatrix} -2 &amp; -4\\ -9 &amp; 3\\ \end {pmatrix} = \begin {pmatrix} \frac {-2}{-42} &amp; \frac {-4}{-42}\\ \frac {-9}{-42} &amp; \frac {3}{-42}\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{21} &amp; \frac {2}{21}\\ \frac {9}{42} &amp; \frac {3}{42}\\ \end {pmatrix}</p> <p>We know that:</p> <p>AX = B</p> <p>or, X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{21} &amp; \frac {2}{21}\\ \frac {9}{42} &amp; \frac {3}{42}\\ \end {pmatrix}\begin {pmatrix} 2\\ \frac52\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {2}{21} + \frac {5}{21}\\ \frac {9}{21} - \frac {15}{84}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {2 + 5}{21}\\ \frac {36 - 15}{84}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {7}{21}\\ \frac {21}{84}\\ \end {pmatrix}</p> <p>&there4; X =\begin {pmatrix} \frac {1}{3}\\ \frac {1}{4}\\ \end {pmatrix}</p> <p>i.e. \begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} = \begin {pmatrix} \frac {1}{3}\\ \frac {1}{4}\\ \end {pmatrix}</p> <p>Taking the corresponding parts of the equal matrix:</p> <p>\frac 1x = \frac 13</p> <p>&there4; x = 3</p> <p>\frac 1y = \frac 14</p> <p>&there4; y = 4</p> <p>&there4; x = 3 and y = 4 <sub>Ans</sub></p> <p></p>

Q68:

Solve by matrix method:

In a company the men get Rs. 25 a day and the women get Rs. 20 a day. 50 people are employed and the total wages are Rs. 1150 a day. Find the member of men and women employed in the company?


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Suppose the number of men = x</p> <p>Suppose the number of women = y</p> <p>Now,</p> <p>1 men get Rs. 25 a day.</p> <p>x men get Rs. 25x a day.</p> <p>1 women get Rs. 20 a day.</p> <p>y women get Rs. 20y a day.</p> <p>According to the question,</p> <p>x + y = 50.....................................(1)</p> <p>25x + 20y = 1150...................(2)</p> <p>Equation (1) and (2) in matrix form:</p> <p>\begin {bmatrix} 1 &amp; 1\\ 25 &amp; 20\\ \end {bmatrix}\begin {bmatrix} x\\ y\\ \end {bmatrix} =\begin {bmatrix} 50\\ 1150\\ \end {bmatrix}</p> <p>where:</p> <p>A =\begin {bmatrix} 1 &amp; 1\\ 25 &amp; 20\\ \end {bmatrix} is a coefficient matrix.</p> <p>X =\begin {bmatrix} x\\ y\\ \end {bmatrix} is a variable matrix.</p> <p>B =\begin {bmatrix} 50\\ 1150\\ \end {bmatrix} is a constant matrix.</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 1 &amp; 1\\ 25 &amp; 20\\ \end {vmatrix} = 1 &times; 20 - 25 &times; 1 = 20 - 25 = -5 &ne; 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-5}\begin {pmatrix} 20 &amp; -1\\ -25 &amp; 1\\ \end {pmatrix} =\begin {pmatrix} \frac {20}{-5} &amp; \frac {-1}{-5}\\ \frac {-25}{-5} &amp; \frac {1}{-5}\\ \end {pmatrix} = \begin {pmatrix} -4 &amp; \frac {1}{5}\\ 5&amp; \frac {1}{-5}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>or, X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} -4 &amp; \frac {1}{5}\\ 5&amp; \frac {1}{-5}\\ \end {pmatrix}\begin {bmatrix} 50\\ 1150\\ \end {bmatrix}</p> <p>or, X =\begin {bmatrix} -200 + 230\\ 250 - 230\\ \end {bmatrix}</p> <p>&there4; X =\begin {bmatrix} 30\\ 20\\ \end {bmatrix}</p> <p>&there4; x = 30 and y = 20 <sub>Ans</sub></p> <p></p>

Q69:

Solve by matrix method;

1 kg potatoes and 1 kg onions together cost Rs. 50.5 kg potatoes and 3 kg onions together cost Rs. 190. Find the cost of per kg potatoes and onions?


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Suppose the cost of potatoes for 1 kg be Rs. x and the cost of onions for 1 kg be Rs. y.</p> <p>Here,</p> <p>The cost of 1 kg potatoes be Rs. x.</p> <p>The cost of 5 kg potatoes be Rs. 5x.</p> <p>The cost of 1 kg onions be Rs. y.</p> <p>The cost of 1 kg onions be Rs. 3y.</p> <p>According to question:</p> <p>x + y = 50...................................(1)</p> <p>5x + 3y = 190..........................(2)</p> <p>Equation (1) and (2) can be written in matrix form.</p> <p>\begin {bmatrix} 1 &amp; 1\\ 5 &amp; 3\\ \end {bmatrix}\begin {bmatrix} x\\ y\\ \end {bmatrix} =\begin {bmatrix} 50\\ 190\\ \end {bmatrix}</p> <p>where:</p> <p>A =\begin {bmatrix} 1 &amp; 1\\ 5 &amp; 3\\ \end {bmatrix} is a coefficient matrix.</p> <p>X =\begin {bmatrix} x\\ y\\ \end {bmatrix} is a variable matrix.</p> <p>B =\begin {bmatrix} 50\\ 190\\ \end {bmatrix} is a constant matrix.</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 1 &amp; 1\\ 5 &amp; 3\\ \end {vmatrix} = 1 &times; 3 - 5 &times; 1 = 3 - 5 = -2 &ne; 0</p> <p>So, the system has unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-2}\begin {pmatrix} 3 &amp; -1\\ -5 &amp; 1\\ \end {pmatrix} = \begin {pmatrix} \frac {-3}{2} &amp; \frac {1}{2}\\ \frac {5}{2} &amp; \frac {-1}{2}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {-3}{2} &amp; \frac {1}{2}\\ \frac {5}{2} &amp; \frac {-1}{2}\\ \end {pmatrix}\begin {bmatrix} 50\\ 190\\ \end {bmatrix}</p> <p>or, X =\begin {bmatrix} -75 + 95\\ 125 - 95\\ \end {bmatrix}</p> <p>&there4; X =\begin {bmatrix} 20\\ 30\\ \end {bmatrix}</p> <p>&there4;x = 20 and y = 30</p> <p>Hence, the cost per kg potatoes is Rs. 20 and the cost per kg onions is Rs. 30. <sub>Ans</sub></p>

Videos

Matrix multiplication (part 1)
Inverse Matrix (part 1)
Matrix multiplication (part 2)
Inverting Matrices (part 3)
Inverse of 3x3 matrix
Inverting matrices (part 2)
Determinant of 3x3 matrix
Introduction to matrices
Inverse of 2x2 matrix
Matrices and Gaussian Elimination
Cement

Cement

Cement is a mixture of fine grey powder of calcium silicate and calcium aluminate.

Slurry:

While manufacturing cement, the limestone and clay are first crushed in crushes and then grinned into powder.That powder mixed with water to obtain a paste is called slurry.

Cement clinkers:

While heating slurry in rotating kilin in 1600 degree Celsius, then it forms the red colored pea sized balls of calcium silicate and calcium aluminate called cement clinkers.

Note: 2 to 3% gypsum is added to cement to increase its setting time.

Uses

  1. It is used for making houses, buildings, roads, etc.
  2. A thick paste of cement, sand (1:3 ratio) and water is called mortar. It is used for plastering walls and joining bricks, stones, etc.

  3. A mixture of cement, gravel, coarse, sand and water is called concrete which is used for roofing and flooring.

  4. Reinforced Concrete Cement (RCC) is a mixture of cement, gravel, sand and water which is present in the framework of iron rods. It is used for making pillars, roofs of buildings, bridges, etc.

Lesson

Materials Used In Daily Life

Subject

Science

Grade

Grade 10

Recent Notes

No recent notes.

Related Notes

No related notes.