Subjective Questions
Q1:
What do you mean by transpose of a matrix? Illustrate with example.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Transpose of matrix: A matrix obtained by interchanging rows and columns of the given matrix is called transpose of the matrix.</p> <p>A = (aamp;bamp;cdamp;eamp;f)</p> <p>A<sup>T</sup> or A<sup>I</sup> =(aamp;dbamp;ecamp;f)</p> <p></p>
Q2:
If (417−3) (2−113)= (x−111y), find the value of x and y.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>(4amp;17amp;−3) (2amp;−11amp;3)= (xamp;−111amp;y)</p> <p>or, (4times;2+1times;1amp;4times;−1+1times;37times;2+1times;−3amp;7times;−1+3times;−3) = (xamp;−111amp;y)</p> <p>or, (8+1amp;−4+314−3amp;−7−9) = (xamp;−111amp;y)</p> <p>or, (9amp;−111amp;−16) = (xamp;−111amp;y)</p> <p>∴ x = 9 and y = -16 <sub>Ans</sub></p>
Q3:
Give A = [−21−18], find:
(i) The transpose of A, (ii) The value of determinant A.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>A = [−2amp;1−1amp;8]</p> <p>Transpose of A (A<sup>T</sup>) or A<sup>I</sup>= [−2amp;−11amp;8]</p> <p>|A| = |−2amp;1−1amp;8| = -16 -(-1)= -16 + 1 = - 15 Ans</p>
Q4:
If M = [327−3] and N = [2−3−50] calculate the value of 2M + 3N.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>M = [3amp;27amp;−3] and N = [2amp;−3−5amp;0]</p> <p>2M = 2[3amp;27amp;−3] =[6amp;414amp;−6]</p> <p>3N = 3[2amp;−3−5amp;0] =[6amp;−9−15amp;0]</p> <p>2M + 3N =[6amp;414amp;−6] +[6amp;−9−15amp;0] = [6+6amp;4−914−15amp;−6+0] =[12amp;−5−1amp;−6] <sub>Ans</sub></p>
Q5:
If A = (2350) and B = (−342−5) then find the value of 2A - 3B.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = (2amp;35amp;0) and B = (−3amp;42amp;−5)</p> <p>2A - 3B = 2 (2amp;35amp;0) - 3 (−3amp;42amp;−5)</p> <p>=(4amp;610amp;0) -(−9amp;126amp;−15)</p> <p>=(4+9amp;6−1210−6amp;0+15)</p> <p>=(13amp;−64amp;15) <sub>Ans</sub></p>
Q6:
If A = (1−3−24) and B = (423−5), write the transpose of A + B.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = (1amp;−3−2amp;4) and B = (4amp;23amp;−5)</p> <p>A + B =(1amp;−3−2amp;4) +(4amp;23amp;−5)</p> <p>=(1+4amp;−3+2−2+3amp;4−5)</p> <p>=(5amp;−11amp;−1)</p> <p>(A + B)<sup>T</sup> =(5amp;1−1amp;−1) <sub>Ans</sub></p>
Q7:
A2×3 amd B3×3 are two matrices. Are AB and BA defined? Write with reasons.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>A<sub>2×3</sub> and B<sub>3×3</sub></p> <p>AB is defined because the number of column of A is equal to the number of rows of B.</p> <p>A<sub>2×3</sub> and B<sub>3×3</sub>= AB<sub>2×3</sub></p> <p>BA is not defined because the number of column of B is not equal to the number of rows of A.</p> <p>B<sub>3×3</sub> and A<sub>2×3</sub> , BA does not exist.</p>
Q8:
Prove that matrix A = (−32−96) has no inverse.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>A = (−3amp;2−9amp;6)</p> <p>|A| = |−3amp;2−9amp;6| = -18 + 18 = 0</p> <p>Hence, A<sup>-1</sup> does not exist.</p> <p>∴ Given matrix has no inverse matrix. <sub>Proved</sub></p>
Q9:
Construct a matrix of order 2×2 whose (ij)th element is given by aij = 2→i - 3→j.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>a<sub>11</sub> = 2(1) - 3(1) = 2 - 3 = -1</p> <p>a<sub>12</sub>= 2(1) - 3(2) = 2 - 6 = -4</p> <p>a<sub>21</sub>= 2(2) - 3(1) = 4 - 3 = 1</p> <p>a<sub>22</sub>= 2(2) - 3(2) = 4 - 6 = -2</p> <p>∴ Required matrix = (−1amp;−41amp;−2)<sub>2×2 Ans</sub></p> <p></p> <p></p> <p></p>
Q10:
Find the matrix x, y = (3224) and 2x + y = (10−32).
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>2x + y =(1amp;0−3amp;2)</p> <p>or, 2x + (3amp;22amp;4) = (1amp;0−3amp;2)</p> <p>or, 2x =(1amp;0−3amp;2) -(3amp;22amp;4)</p> <p>or, 2x =(1−3amp;0−2−3−2amp;2−4)</p> <p>or, 2x =(−2amp;−2−5amp;−2)</p> <p>or, x = (−22amp;−22−52amp;−22)</p> <p>∴ x =(−1amp;−1−52amp;−1) <sub>Ans</sub></p>
Q11:
Construct a 3×3 matrix A whose elements are given by aij = 3i + 2j.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>a<sub>ij</sub> = 3i + 2j</p> <p>a<sub>11</sub> = 3× 1 + 2 × 1 = 3 + 2 = 5</p> <p>a<sub>12</sub>= 3× 1 + 2 × 2= 3 + 4 = 8</p> <p>a<sub>13</sub>= 3× 1 + 2 × 3 = 3 + 6 = 9</p> <p>a<sub>21</sub> = 3× 2 + 2 × 1 = 6 + 2 = 8</p> <p>a<sub>22</sub>= 3× 2 + 2 × 2 = 6 + 4 = 10</p> <p>a<sub>23</sub>= 3× 2 + 2 × 3 = 6 + 6 = 12</p> <p>a<sub>31</sub> = 3× 3 + 2 × 1 = 9 + 2 = 11</p> <p>a<sub>32</sub>= 3× 3 + 2 × 2 = 9 + 4 = 13</p> <p>a<sub>33</sub>= 3× 3 + 2 × 3 = 9 + 6 = 15</p> <p>∴ The required matrix is A = [5amp;7amp;98amp;10amp;1211amp;13amp;15] <sub>Ans</sub></p>
Q12:
If A + B = [7025] and A - B = [3003].
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>If:</p> <p>A + B = [7amp;02amp;5] ..................(1)</p> <p>A - B = [3amp;00amp;3]....................(2)</p> <p>Adding (1) and (2), we get:</p> <p>A + B + A - B = [7amp;02amp;5] + [3amp;00amp;3]</p> <p>or, 2A = [10amp;02amp;8]</p> <p>or, 12 × 2A = 12 [10amp;02amp;8]</p> <p>∴ A = [5amp;01amp;4]</p> <p>Now,</p> <p>From (1)</p> <p>A + B =[7amp;02amp;5]</p> <p>or,[5amp;01amp;4] + B=[7amp;02amp;5]</p> <p>or, B =[7amp;02amp;5] -[5amp;01amp;4]</p> <p>or, B =[7−5amp;0−02−1amp;5−4]</p> <p>∴ B =[2amp;01amp;1]</p>
Q13:
If A = [3−520] and B = [−140−3], find the determinant of 2AT - 3BT.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = [3amp;−52amp;0] and B = [−1amp;40amp;−3]</p> <p>A<sup>T</sup> =[3amp;2−5amp;0] and B =[−1amp;04amp;−3]</p> <p>Now,</p> <p>2A<sup>T</sup> - 3B<sup>T</sup> = 2 [3amp;2−5amp;0] - 3[−1amp;04amp;−3]</p> <p>=[6amp;4−10amp;0] -[−3amp;012amp;−9]</p> <p>=[6+3amp;4−0−10−12amp;0+9]</p> <p>=[9amp;4−22amp;9]</p> <p>Again,</p> <p>|2AT−3BT| =|9amp;4−22amp;9| = 81 + 88 = 169 <sub>Ans</sub></p>
Q14:
Define inverse of a matrix with example.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Two matrices A and B are said to be inverse to each other, if AB = I = BA then B is the inverse of A. i.e. A<sup>-1</sup> = B. Similarly, A is called the inverse of B i.e. B<sup>-1</sup> = A.</p>
Q15:
If A = (1x01) , B = (32−54) and determinant of A2 - BT = 8, find the value of x.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>A = (1amp;x0amp;1) , B =(3amp;2−5amp;4)</p> <p>A<sup>2</sup> - B<sup>T</sup></p> <p>=(1amp;x0amp;1) .(1amp;x0amp;1) -(3amp;−52amp;4)</p> <p>=(1+0amp;x+x0+0amp;0+1) -(3amp;−52amp;4)</p> <p>=(1amp;2x0amp;1) -(3amp;−52amp;4)</p> <p>=(−2amp;2x+5−2amp;−3)</p> <p>Now,</p> <p>|−2amp;2x+5−2amp;−3| = 8</p> <p>or, 6 + 4x + 10 = 8</p> <p>or, 4x = 8 - 16</p> <p>or, x = −84</p> <p>∴ x = -2 <sub>Ans</sub></p>
Q16:
If (2x+3y−23z−y) = (5−812−40−34) (72), find the value of x, y and z.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>(2x+3y−23z−y) = (5amp;−812amp;−40−3amp;4)(72)</p> <p>or,(2x+3y−23z−y) = (35−1684−80−21+8) = (194−13)</p> <p>Taking the corresponding elements of the equal matrix</p> <p>2x + 3 = 19</p> <p>or, 2x = 19 - 3</p> <p>or, x = 162</p> <p>∴ x = 8</p> <p>y - 2 = 4</p> <p>or, y = 4 + 2</p> <p>∴ y = 6</p> <p>3z - 1 = - 13</p> <p>or, 3z = - 13 + 1</p> <p>or, z = −123</p> <p>∴ z = -4</p> <p>∴ x = 8, y = 6 and z = -4 <sub>Ans</sub></p>
Q17:
Define the transpose of a matrix.If A = (135−247), find AT.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>A matrix obtained by interchanging rows and columns of the given matrix is called transpose of the matrix.</p> <p>A = (1amp;3amp;5−2amp;4amp;7)</p> <p>A<sup>T</sup> =A = (1amp;−23amp;45amp;7) <sub>Ans</sub></p>
Q18:
If (xy) = (3546) (12), find the value of x and y.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>(xy) = (3amp;54amp;6)(12)</p> <p>or,(xy) =(3+104+12)</p> <p>or,(xy) =(1316)</p> <p>∴ x = 13 and y = 16 <sub>Ans</sub></p>
Q19:
Find the value of (xy). If (−100−2) (xy) = (−24).
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>(−1amp;00amp;−2)(xy) =(−24)</p> <p>or,(−x+00−2) =(−24)</p> <p>or,(−x−2y) =(−24)</p> <p>Taking corresponding elements of the equal matrix</p> <p>-x = -2</p> <p>∴ x = 2</p> <p>-2y = 4</p> <p>or, y = 4−2</p> <p>∴ y = -2</p> <p>∴ x = 2 & y = -2 <sub>Ans</sub></p>
Q20:
Find the value of x and y: (113y) (x1) = (41).
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>(1amp;13amp;y) (x1) =(41)</p> <p>or, (x+13x+y) =(41)</p> <p>Taking corresponding elements of the equal matrix:</p> <p>x + 1 = 4</p> <p>or, x = 4 -1</p> <p>∴ x = 3</p> <p>3x + y = 1</p> <p>or, 3 × 3 + y = 1</p> <p>or, 9 + y = 1</p> <p>or, y = 1 - 9</p> <p>∴ y = -8</p> <p>∴ x = 2 and y = -8 <sub>Ans</sub></p>
Q21:
If A = (34−25) and B = (21−13), find the determinant of 3A - 4B.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given matrix A = (3amp;4−2amp;5) and B =(2amp;1−1amp;3)</p> <p>3A - 4B = 3(3amp;4−2amp;5) - 4(3amp;4−2amp;5)</p> <p>=(9amp;12−6amp;15) +(−8amp;−44amp;−12)</p> <p>=(9−8amp;12−4−6+4amp;15−12)</p> <p>=(1amp;8−2amp;3)</p> <p>|3A−4B|</p> <p>=|1amp;8−2amp;3|</p> <p>= 1× 3 - 8 (-2)</p> <p>= 3 + 16</p> <p>= 19 <sub>Ans</sub></p>
Q22:
If P = (1−1−11) and Q = (2314); find the determinant of PQ.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>P = (1amp;−1−1amp;1) and Q =(2amp;31amp;4)</p> <p>PQ = (1times;2+1times;−1amp;1times;3+4times;−1−1times;2+1times;1amp;−1times;3+1times;4 )</p> <p>=(2−1amp;3−4−2+1amp;−3+4)</p> <p>=(1amp;−1−1amp;1)</p> <p>|PQ| =|1amp;−1−1amp;1|</p> <p>= -1× 1 - (-1)× (-1)</p> <p>= 1 -1</p> <p>= 0 <sub>Ans</sub></p>
Q23:
If P = (132−1) and Q = (123−4), find the determinant of 2P - 3Q.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>2P - 3Q = 2 (1amp;32amp;−1) - 3(1amp;23amp;−4)</p> <p>=(2amp;64amp;−2) -(3amp;69amp;−12)</p> <p>=(2−3amp;6−64−9amp;−2+12)</p> <p>=(−1amp;0−5amp;10)</p> <p>|2P−3Q| =|−1amp;0−5amp;10| = -1× 10 - (-5)× 0 = -10 + 0 = -10 <sub>Ans</sub></p>
Q24:
If P = (20−13) and Q = (24−62), find the determinant of 5P - 12Q + 2I.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>P = (2amp;0−1amp;3), Q = (2amp;4−6amp;2) and I = (1amp;00amp;1)</p> <p>5P - 12Q + 2I = 5 (2amp;0−1amp;3) - 12(2amp;4−6amp;2) +2 (1amp;00amp;1) = (10amp;0−5amp;15) - (1amp;2−3amp;1) + (2amp;00amp;2) = (12amp;0−5amp;17) - (1amp;2−3amp;1) = (11amp;−2−2amp;16)</p> <p>|5P−(12)Q+2I| =|11amp;−2−2amp;16| = 16× 11 - (-2)× (-2) = 176 - 4 = 172 <sub>Ans</sub></p> <p></p>
Q25:
If A = (35−60) and B = (18−6123) find the determinant of 3A - 13B.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = (3amp;5−6amp;0) and B =(18amp;−612amp;3)</p> <p>3A - 13B</p> <p>= 3(3amp;5−6amp;0) - 13(18amp;−612amp;3)</p> <p>=(9amp;15−18amp;0) -(6amp;−24amp;1)</p> <p>= (9−6amp;15+2−18−4amp;0−1)</p> <p>=(3amp;17−22amp;−1)</p> <p>|3A−(13)B| =(3amp;17−22amp;−1) = -3 +374 = 371 <sub>Ans</sub></p>
Q26:
Which matrix multiplies to the matrix(1134) to get a matrix(4562)?
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let: M =(aamp;cbamp;d)</p> <p>(aamp;cbamp;d)(1amp;13amp;4) =(4amp;56amp;2)</p> <p>or,(atimes;1+ctimes;3amp;atimes;1+ctimes;4btimes;1+dtimes;3amp;btimes;1+dtimes;4) =(4amp;56amp;2)</p> <p>or,(a+3camp;a+4cb+3damp;b+4d) =(4amp;56amp;2)</p> <p>Equating both sides,</p> <p>a + 3c = 4</p> <p>or, a = 4 - 3c .........................(1)</p> <p>a + 4c = 5................................(2)</p> <p>Putting the value of a in equation (2)</p> <p>4 - 3c + 4c = 5</p> <p>or, 4 + c = 5</p> <p>or, c = 5 - 4</p> <p>∴ c = 1</p> <p>Putting the value of c in equation (1)</p> <p>∴ a = 4 - 3c = 4 - 3× 1 = 4 - 3 = 1</p> <p>b + 3d = 6</p> <p>b = 6 - 3d..........................(3)</p> <p>b + 4d = 2.........................(4)</p> <p>Putting the value of b in equation (4)</p> <p>6 - 3d + 4d = 2</p> <p>or, 6 + d = 2</p> <p>or, d = 2 - 6</p> <p>∴ d = -4</p> <p>Puting the value of d in equation (3)</p> <p>∴ b = 6 - 3 × (-4) = 6 + 12 = 18</p> <p>∴ (aamp;bcamp;d) = (1amp;118amp;−4) <sub>Ans</sub></p>
Q27:
If A = (−140−3) and B = (3−520) find the determinant of 2AT - 3BT.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = (−1amp;40amp;−3) and B =(3amp;−52amp;0)</p> <p>A<sup>T</sup> =(−1amp;04amp;−3) and B<sup>T</sup> =(3amp;2−5amp;0)</p> <p>2A<sup>T</sup> - 3B<sup>T</sup></p> <p>= 2(−1amp;04amp;−3) - 3(3amp;2−5amp;0)</p> <p>=(−2amp;08amp;−6) - (9amp;615amp;0)</p> <p>=(−2−9amp;0−68−15amp;−6−0)</p> <p>=(−11amp;−6−7amp;−6)</p> <p>|2AT−3BT| =|−11amp;−6−7amp;−6| = -11 ×(-6) - (-7) ×(-6) = 66 - 42 = 24 <sub>Ans</sub></p> <p></p>
Q28:
If P = (−301−2) and Q = (1−234), find the determinant of 5P - 2Q - 3I.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>P = (−3amp;01amp;−2) and Q = (1amp;−23amp;4) and I =(1amp;00amp;1)</p> <p>5P - 2Q - 3I</p> <p>= 5 (−3amp;01amp;−2) - 2(1amp;−23amp;4) -3(1amp;00amp;1)</p> <p>=(−15amp;05amp;−10) -(2amp;−46amp;8) -(3amp;00amp;3)</p> <p>=(−15−2−3amp;0−(−4)−05−6−0amp;−10−8−3)</p> <p>=(−20amp;4−1amp;−21)</p> <p>|5P−2Q−3I| =|−20amp;4−1amp;−21| = -20 × (-21) - 4 × (-1) = 420 + 4 = 424 <sub>Ans</sub></p>
Q29:
If M = [3−212] and N = [134−1], find the determinant of 2M + 3N.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>M = [3amp;−21amp;2] and N = [1amp;34amp;−1]</p> <p>2M + 3N</p> <p>= 2[3amp;−21amp;2] + 3[1amp;34amp;−1]</p> <p>=[6amp;−42amp;4] +[3amp;912amp;−3]</p> <p>=[6+3amp;−4+92+12amp;4−3]</p> <p>=[9amp;514amp;1]</p> <p>|2M+3N| =[9amp;514amp;1] = 9× 1 - 5× 14 = 9 - 70 = -61 <sub>Ans</sub></p>
Q30:
If P = (1−23−1) and Q = (3−421), find the determinant of 3P - 2Q.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>P = (1amp;−23amp;−1) and Q =(3amp;−42amp;1)</p> <p>3P - 2Q</p> <p>= 3 (1amp;−23amp;−1) - 2 (3amp;−42amp;1)</p> <p>= (3amp;−6 9amp;−3) -(6amp;−84amp;2)</p> <p>=(3−6amp;−6+89−4amp;−3−2)</p> <p>=(−3amp;25amp;−5)</p> <p>|3P−2Q| =(−3amp;25amp;−5) = -3× (-5) - 5× 2 = 15 - 10 = 5 <sub>Ans</sub></p>
Q31:
If A = (46x3), B = (−4578) and the determinant of A - B - 5I is 14, calculate the value of x.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = (4amp;6xamp;3) and B = (−4amp;57amp;8) and I =(1amp;00amp;1)</p> <p>Now,</p> <p>A - B - 5I</p> <p>=(4amp;6xamp;3) -(−4amp;57amp;8) - 5(1amp;00amp;1)</p> <p>=(4−(−4)amp;6−5x−7amp;3−8) -(5amp;00amp;5)</p> <p>=(8amp;1x−7amp;−5) -(5amp;00amp;5)</p> <p>=(8−5amp;1−0x−7−0amp;−5−5)</p> <p>=(3amp;1x−7amp;−10)</p> <p>We have,</p> <p>|A−B−2I| = 14</p> <p>or,|3amp;1x−7amp;−10| = 14</p> <p>or, 3× -10 - 1× (x-7) = 14</p> <p>or, -30 - x + 7 = 14</p> <p>or, -x = 14 - 7 + 30</p> <p>or, -x = 37</p> <p>∴ x = -37 <sub>Ans</sub></p> <p></p>
Q32:
If the inverse of matrix A = (1−20x) and B = (14y2), determine the values of x and y.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = (1amp;−20amp;x) and B =(1amp;4yamp;2)</p> <p>If A and B are inverse matrix, then</p> <p>AB = I, where I =(1amp;00amp;1)</p> <p>or,(1amp;−20amp;x)(1amp;4yamp;2) =(1amp;00amp;1)</p> <p>or,(1times;1+ytimes;(−2)amp;1times;4+2times;(−2)0times;1+ytimes;xamp;0times;4+2times;x) =(1amp;00amp;1)</p> <p>or,(−2y+1amp;0xyamp;2x) =(1amp;00amp;1)</p> <p>Taking corresponding elements:</p> <p>-2y + 1 = 1</p> <p>or, -2y = 1 - 1</p> <p>or, y = 02</p> <p>∴ y = 0</p> <p>Similarly,</p> <p>2x = 1</p> <p>∴ x= 12</p> <p>∴ x = 12 and y = 0 <sub>Ans</sub></p>
Q33:
If A = (7432) then find A-1.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given,</p> <p>A = (7amp;43amp;2)</p> <p>|A| = |7amp;43amp;2| = 7× 2 - 4× 3 = 14 - 12 = 2≠ 0.</p> <p>It is possible to find A<sup>-1</sup>.</p> <p>A<sup>-1</sup> = 1|A| Adj (A)</p> <p>A = 1|A| (2amp;−4−3amp;7) = 12(2amp;−4−3amp;7) = ((22)amp;(−42)(−32)amp;(72)) =(1amp;−2(−32amp;(72))</p> <p>∴ A<sup>-1</sup> =(1amp;−2(−32amp;(72)) <sub>Ans</sub></p>
Q34:
If the inverse of the matrix (2m759) is the matrix (9n−54). Calculate the value of m and n.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let:</p> <p>A =(2mamp;75amp;9) and A<sup>-1</sup>=(9amp;n−5amp;4)</p> <p>We know that,</p> <p>AA<sup>-1</sup> = I, where I =(1amp;00amp;1)</p> <p>or,(2mamp;75amp;9) (9amp;n−5amp;4) =(1amp;00amp;1)</p> <p>or,(18m−35amp;2mn+2845−45amp;5n+36) =(1amp;00amp;1)</p> <p>or,(18m−35amp;2mn+280amp;5n+36) =(1amp;00amp;1)</p> <p>Taking the corresponding elements both sides</p> <p>18m - 35 = 1</p> <p>or, 18 m = 1 + 35</p> <p>or, m = 3618</p> <p>∴ m = 2</p> <p>5n + 36 = 1</p> <p>or, 5n = 1 - 36</p> <p>or, n = −355</p> <p>∴ n = -7</p> <p>∴ m = 2 and n = -7 <sub>Ans</sub></p>
Q35:
If |x−1x−2xx−3| = 0, find the value of x.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>|x−1amp;x−2xamp;x−3| = 0</p> <p>or, (x - 1) (x - 3) - x(x - 2) = 0</p> <p>or, x<sup>2</sup> - 4x + 3 - x<sup>2</sup> + 2x = 0</p> <p>or, - 2x + 3 = 0</p> <p>or, 2x = 3</p> <p>∴ x = 32 <sub>Ans</sub></p>
Q36:
If A = [3−5−42] show that A2 - 5A = 14I, where I is an identity matrix.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = [3amp;−5−4amp;2]</p> <p>L.H.S. = A<sup>2</sup> - 5A = A× A - 5× A</p> <p>= [3amp;−5−4amp;2]× [3amp;−5−4amp;2] - 5 [3amp;−5−4amp;2]</p> <p>= [3times;3+(−5)times;(−4)amp;3times;(−5)+(−5)times;2−4times;3+2times;(−4)amp;−4times;(−5)+2times;2] + [−5times;3amp;−5times;(−5)−5times;(−4)amp;−5times;2]</p> <p>= [9+20amp;−15−10−12−8amp;20+4] + [−15amp;2520amp;−10]</p> <p>= [29amp;−25−20amp;24] + [−15amp;2520amp;−10]</p> <p>= [29−15amp;−25+25−20+20amp;24−10]</p> <p>= [14amp;00amp;14]</p> <p>= 14 [1amp;00amp;1]</p> <p>= 14I <sub>Ans</sub></p>
Q37:
If the inverse of the matrix (x2x−9−y3) is the matrix (35yx). Find the value of x and y.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>We know that,</p> <p>(xamp;2x−9−yamp;3)(3amp;5yamp;x) = I where I =(1amp;00amp;1)</p> <p>or,(3x+y(2x−9)amp;5x+x(2x−9)−3y+3yamp;−5y+3x) =(1amp;00amp;1)</p> <p>or,(3x+2xy−9yamp;5x+2x2−9x0amp;−5y+3x) =(1amp;00amp;1)</p> <p>or,(3x+2xy−9yamp;2x2−4x0amp;3x−5y) =(1amp;00amp;1)</p> <p>Taking the corresponding element of the equal matrix</p> <p>2x<sup>2</sup> - 4x = 0</p> <p>2x(x - 2) = 0</p> <p>Either: 2x = 0 ∴x = 0</p> <p>Or, x - 2 = 0 ∴x = 2</p> <p>3x - 5y = 1</p> <p>or, 3x - 1 = 5y</p> <p>or, y = 3x−15</p> <p>If x = 0 then y = \frac {3 × 0 - 1}{5} = -15</p> <p>If x = 2 then y =\frac {3 × 2 - 1}{5} = 1</p> <p>∴ x = 0 or 2</p> <p>y = -15 or 1 <sub>Ans</sub></p>
Q38:
if I is the unit matrix of order 2×2 and 3A - 4I = 5(1−20−1) then find the matrix A.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>3A - 4I = 5(1amp;−20amp;−1)</p> <p>or, 3A - 4(1amp;00amp;1) =(5amp;−100amp;−5)</p> <p>or, 3A -(4amp;00amp;4) =(5amp;−100amp;−5)</p> <p>or, 3A =(5amp;−100amp;−5) +(4amp;00amp;4)</p> <p>or, 3A = (5+4amp;−10+00+0amp;−5+4) </p> <p>or, 3A =(9amp;−100amp;−1)</p> <p>or, A = ((93)amp;(−103)(03)amp;(−13))</p> <p>∴ A =(3amp;(−103)0amp;(−13)) <sub>Ans</sub></p> <p></p>
Q39:
If A = (3512), find the determinant of A2 + 5A-1 - 14I, where I is a 2×2 matrix.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A =(3amp;51amp;2) and I =(1amp;00amp;1)</p> <p>A<sup>2</sup> + 5A<sup>-1</sup> - 14I</p> <p>=(3amp;51amp;2)⋅(3amp;51amp;2) + 5(3amp;51amp;2)<sup>-1</sup> -14(1amp;00amp;1)</p> <p>=(9+5amp;15+103+2amp;5+4) + 56−5(2amp;−5−1amp;3) -(14amp;00amp;14)</p> <p>=(14amp;255amp;9) +(10amp;−25−5amp;15) -(14amp;00amp;14)</p> <p>=(24amp;00amp;24) -(14amp;00amp;14)</p> <p>=(10amp;00amp;10)</p> <p>|A2+5A−1−14A| =|10amp;00amp;10| = 100 - 0 = 100 <sub>Ans</sub></p>
Q40:
If A = (42−11) prove that A2 - 5A + 6I = 0 where I is an 2×2 unit matrix.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = (4amp;2−1amp;1), I = (1amp;00amp;1)</p> <p>L.H.S.</p> <p>= A<sup>2</sup> - 5A + 6I</p> <p>= (4amp;2−1amp;1)⋅ (4amp;2−1amp;1) - 5 (4amp;2−1amp;1) + 6 (1amp;00amp;1)</p> <p>= (16−2amp;8+2−4−1amp;−2+1) - (20amp;10−5amp;5) + (6amp;00amp;6)</p> <p>= (14amp;10−5amp;−1) - (20amp;10−5amp;5) + (6amp;00amp;6)</p> <p>= (14−20+6amp;10−10+05+5+0amp;−1−5+6)</p> <p>= (0amp;00amp;0)</p> <p>= 0</p> <p>= R.H.S <sub>Proved</sub></p> <p></p>
Q41:
if A-1 = (4−131−3), find the matrix A.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A<sup>-1</sup> =(4amp;−131amp;−3)</p> <p>Adj1 (A) =(−3amp;−113amp;4)</p> <p>|A| = -12 + 13 = 1</p> <p>A = 1|A| Adj.(A) = 11(−3amp;13−1amp;4) =(−3amp;13−1amp;4) <sub>Ans</sub></p>
Q42:
If M = (4005), find a matrix P such that MP = (1224).
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let:</p> <p>P = (aamp;bcamp;d)</p> <p>MP =(1amp;22amp;4)</p> <p>or,(4amp;00amp;5)⋅(aamp;bcamp;d) =(1amp;22amp;4)</p> <p>or,(4a+0amp;4b+00+5camp;0+5d) =(1amp;22amp;4)</p> <p>or,(4aamp;4b5camp;5d) =(1amp;22amp;4)</p> <p>Taking corresponding elements of the equal matrix:</p> <p>4a = 1</p> <p>∴ a = 14</p> <p>4b = 2</p> <p>∴ b = 12</p> <p>5c = 2</p> <p>∴ c = 25</p> <p>5d = 4</p> <p>∴ d = 45</p> <p>∴ P =(14amp;1225amp;45) <sub>Ans</sub></p>
Q43:
Define inverse of a matrix. Find the inverse A-1 to matrix A if A = (2134).
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Two matrices A and B are said to be inverse to each other, if AB = I = BA then B is the inverse of A. i.e. A<sup>-1</sup> = B. Similarly, A is called the inverse of B i.e. B<sup>-1</sup> = A.</p> <p>A =(2amp;13amp;4)</p> <p>A<sup>-1</sup>= 1|A| Adj.(A)</p> <p>|A| =|2amp;13amp;4| = 8 - 3 = 5</p> <p>A<sup>-1</sup> = 15(4amp;−1−3amp;2) =(45amp;−15−35amp;25) <sub>Ans</sub></p>
Q44:
If A = (1153) find the A-1.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A =(1amp;15amp;3)</p> <p>|A| =|1amp;15amp;3| = 3 - 5 = -2</p> <p>A<sup>-1</sup>=1|A| Adj.(A)</p> <p>= 1−2|3amp;−1−5amp;1|</p> <p>=(−32amp;1252amp;−12) <sub>Ans</sub></p>
Q45:
Solve by matrix method:
4x - 3y = 11
3x + 7y = -1
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>4x - 3y = 11..........................................(1)</p> <p>3x + 7y = -1..........................................(2)</p> <p>Given equations in matrix form:</p> <p>(4amp;−33amp;7)(xy) =(11−1)</p> <p>We know,</p> <p>AX = B</p> <p>where. A =(4amp;−33amp;7), X =(xy) and B =(11−1)</p> <p>|A| =|4amp;−33amp;7| = 7× 4 - 3× -3 = 28 + 9 = 37≠ 0</p> <p>Hence, it has unique solution.</p> <p>X = A<sup>-1</sup>B where A<sup>-1</sup> =1|A| Adj.(A) = 137(7amp;3−3amp;4)</p> <p>X = A<sup>-1</sup>B = 137(7amp;3−3amp;4)(11−1)</p> <p>= 137(77amp;−3−33amp;−4)</p> <p>= 137(7437)(7437−3737)</p> <p>= (2−1)</p> <p>∴ x = 2 and y = -1 <sub>Ans</sub></p> <p></p>
Q46:
Solve by matrix method:
2x + 3y - 18 = 0
3x - 2y - 1 = 0
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = 18......................(1)</p> <p>3x - 2y = 1 .........................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;33amp;−2)(xy) = (181), AX = B</p> <p>where, A =(2amp;33amp;−2), X =(xy) and B =(181)</p> <p>|A| =|2amp;33amp;−2| = 2× (-2) - 3× 3 = -4 - 9 = -13≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj.A =(−2amp;−3−3amp;2)</p> <p>X = A<sup>-1</sup>B</p> <p>or, X = 1−13(−2amp;−3−3amp;2)(181)</p> <p>or, X = 1−13(−2times;18+1times;−3−3times;18+2times;1)</p> <p>or, X = 1−13(−36−3−54+2)</p> <p>or, X =(−39−13−52−13)</p> <p>or, X =(34)</p> <p>∴ x = 3 and y = -4 <sub>Ans</sub></p>
Q47:
Solve by matrix method:
3x - 2y = 5
x + y = 5
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>3x - 2y = 5 ......................(1)</p> <p>x + y = 5 ...........................(2)</p> <p>Given equation in matrix form:</p> <p>(3amp;−21amp;1)(xy) =(55)</p> <p>We know, AX = B</p> <p>where, A =(3amp;−21amp;1), X =(xy) and B =(55)</p> <p>|A| =|3amp;−21amp;1| = 3× 1 -1× -2 = 5≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj. A = 15(1amp;2−1amp;3) =(15amp;25−15amp;35)</p> <p>X = A<sup>-1</sup>B =(15amp;25−15amp;35)(55) =(1+2−1+3) =(32)</p> <p>∴ x = 3 and y = 2 <sub>Ans</sub></p>
Q48:
Solve by matrix method:
3x + 5y = 21
2x + 3y = 13
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>3x + 5y = 21................................(1)</p> <p>2x + 3y = 13................................(2)</p> <p>Given equation in matrix form:</p> <p>(3amp;52amp;3)(xy) =(2113)</p> <p>We know, AX = B</p> <p>where, A =(3amp;52amp;3), X =(xy) and B =(2113)</p> <p>|A| =|3amp;52amp;3| = 3× 3 - 5× 2 = 9 -10 = -1≠ 0</p> <p>It has a unique solution.</p> <p>X = A<sup>-1</sup>B</p> <p>A<sup>-1</sup>=1|A| Adj. A = 1−1(3amp;−5−2amp;3) =(−3amp;52amp;−3)</p> <p>X = A<sup>-1</sup>B</p> <p>=(−3amp;52amp;−3)(2113)</p> <p>=(−63+6542−39)</p> <p>= (23)</p> <p>∴ x = 2 and y = 3 <sub>Ans</sub></p> <p></p> <p></p>
Q49:
Solve by matrix method:
2x + 3y = 5
5x - 2y = 3
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = 5.........................(1)</p> <p>5x - 2y = 3..........................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;35amp;−2) (xy) =(53) or, AX = B</p> <p>where, A =(2amp;35amp;−2), X =(xy) and B =(53)</p> <p>|A| =|2amp;35amp;−2| = -4 - 15 = -19≠ 0</p> <p>It has a unique solution.</p> <p>X = A<sup>-1</sup>B</p> <p>A<sup>-1</sup>=1|A| Adj. A = 1−19(−2amp;−3−5amp;2)</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =1−19(−2amp;−3−5amp;2)(53)</p> <p>or, X =1−19(−10−9−25+6)</p> <p>or, X =(−19−19−19−19)</p> <p>∴ X =(11)</p> <p>∴ x = 1 and y = 1 <sub>Ans</sub></p>
Q50:
Solve by matrix method:
3x- 5y = 3
4x + 3y = 4
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>3x - 5y = 3..........................(1)</p> <p>4x + 3y = 4.........................(2)</p> <p>Given equation in matrix form;</p> <p>(3amp;−54amp;3)(xy) =(34) or, AX = B</p> <p>where, A = (3amp;−54amp;3), X =(xy) and B =(34)</p> <p>|A| =|3amp;−54amp;3| = 9 + 20 = 29≠ 0</p> <p>It has a unique solution.</p> <p>X = A<sup>-1</sup>B</p> <p>X =1|A|(3amp;5−4amp;3)(34)</p> <p>or, X = 129 (3times;3+5times;4−4times;3+3times;4)</p> <p>or, X = 129 (9+20−12+12)</p> <p>or, X = 129 (290)</p> <p>or, X =(2929029)</p> <p>∴ X =(10)</p> <p>∴ x = 1 and y = 0 <sub>Ans</sub></p>
Q51:
Solve by matrix method:
2x + y = 3
3x + 2y = 2
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x + y = 3..................(1)</p> <p>3x + 2y = 2...............(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;13amp;2)(xy) =(32), AX = B</p> <p>where, A =(2amp;13amp;2), X =(xy) and B =(32)</p> <p>|A| =|2amp;13amp;2| = 2 × 2 - 3 × 1 = 4 - 3 = 1 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj. A = 11 (2amp;−1−3amp;2)</p> <p>=(2amp;−1−3amp;2)</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(2amp;−1−3amp;2)(32)</p> <p>or, X =(2times;3−1times;2−3times;3+2times;2)</p> <p>or, X =(6−2−9+4)</p> <p>∴ X = (4−5)</p> <p>∴ x = 4 and y = -5 <sub>Ans</sub></p>
Q52:
Given: A = [ab0c], B = [2003] and AB = A + B, find the values of a, b and c.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>A = [aamp;b0amp;c] and B =[2amp;00amp;3]</p> <p>AB =[aamp;b0amp;c][2amp;00amp;3] =[atimes;2+btimes;0amp;atimes;0+btimes;30times;2+ctimes;0amp;0times;0+ctimes;3] =[2aamp;3b0amp;3c]</p> <p>A + B =[aamp;b0amp;c] +[2amp;00amp;3] =[a+2amp;b0amp;c+3]</p> <p>From Question,</p> <p>[2aamp;3b0amp;3c] =[a+2amp;b0amp;c+3]</p> <p>Taking the corresponding elements of the equal matrix,</p> <p>a + 2 = 2a</p> <p>or, 2a - a = -2</p> <p>∴ a = -2</p> <p>3b = b</p> <p>or, 3b - b = 0</p> <p>or, 2b = 0</p> <p>∴ b = 0</p> <p>3c = c + 3</p> <p>or, 3c - c = 3</p> <p>or, 2c = 3</p> <p>∴ c = 32</p> <p>∴ a = 2, b = 0 and c = 32 <sub>Ans</sub></p>
Q53:
Solve by matrix method:
2x + 3y + 4 = 0
-5x + 4y + 13 = 0
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = -4....................................(1)</p> <p>-5x + 4y = -13...............................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;3−5amp;4)(xy) =(−4−13), AX = B</p> <p>where, A =(2amp;3−5amp;4), X =(xy) and B =(−4−13)</p> <p>|A| =|2amp;3−5amp;4| = 2 × 4 - (-5) × 3 = 8 + 15 = 23 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj. A = 123 (4amp;−35amp;2) =(423amp;−323523amp;223)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(423amp;−323523amp;223)(−4−13)</p> <p>or, X =(−1623+3923−2023−2623)</p> <p>or, X = (−16+3923−20−2623)</p> <p>or, X = (2323−4623)</p> <p>∴ X =(1−2 )</p> <p>∴ x = 1 and y = -2<sub>Ans</sub></p> <p></p>
Q54:
Solve the following given equations by matrix method:
4x + 3y = 5
y - 3x = -7
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>4x + 3y = 5.........................................(1)</p> <p>y - 3x = -7...........................................(2)</p> <p>Given equation in matrix form:</p> <p>(4amp;3−3amp;1)(xy) =(5−7), AX =B</p> <p>where, A =(4amp;3−3amp;1), X =(xy) and B =(5−7)</p> <p>|A| =|4amp;3−3amp;1| = 4 × 1 - 3 × -3 = 4 + 9 = 13 ≠ 0</p> <p>It has unique solution.</p> <p>A<sup>-1</sup>=1|A| Adj.A = 113(1amp;−33amp;4) =(113amp;−313313amp;413)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(113amp;−313313amp;413)(5−7)</p> <p>or, X =(513+21131513−2813)</p> <p>or, X =(5+211315−2813)</p> <p>or, X =(2613−1313)</p> <p>∴ X =(2−1)</p> <p>∴ x = 2 and y = -1 <sub>Ans</sub></p>
Q55:
Solve the given equation by matrix method:
2x - y = 1
2y + x = 3
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x - y = 1...............................(1)</p> <p>x + 2y = 3..............................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;−11amp;2)(xy) =(13), AX = B</p> <p>where, A =(2amp;−11amp;2), X = (xy) and B =(13)</p> <p>|A| =|2amp;−11amp;2| = 2 × 2 - 1 × -1 = 4 + 1 = 5 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 15(2amp;1−1amp;2) =(−25amp;15−15amp;25)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(−25amp;15−15amp;25)(13)</p> <p>or, X =(25+35−15+65)</p> <p>or, X =(2+35−1+65)</p> <p>or, X =(5555)</p> <p>∴ X =(11)</p> <p>∴ x = 1 and y = 1 <sub>Ans</sub></p>
Q56:
Solve by matrix method:
x + 2y = 8
2x + 3y = 11
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x + 2y = 8........................................(1)</p> <p>2x + 3y = 11..................................(2)</p> <p>Given equation in matrix form:</p> <p>(1amp;22amp;3)(xy) =(811) , AX = B</p> <p>where, A =(1amp;22amp;3), X =(xy) and B =(811)</p> <p>|A| =|1amp;22amp;3| = 1 × 3 - 2 × 2 = 3 - 4 = -1 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 1−1(3amp;−2−2amp;1) = (−3amp;22amp;−1)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(−3amp;22amp;−1)(811)</p> <p>or, X =(−24+2216−11)</p> <p>∴ X =(−25)</p> <p>∴ x = -2 and y = 5 <sub>Ans</sub></p>
Q57:
Solve by matrix method:
2x + 3y = 5
2y - 3x = - 1
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x + 3y = 5...........................(1)</p> <p>-3x + 2y = -1.......................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;3−3amp;2)(xy) =(5−1), AX = B</p> <p>where, A =(2amp;3−3amp;2), X =(xy) and B =(5−1)</p> <p>|A| =|2amp;3−3amp;2| = 2 × 2 - (-3) × 3 = 4 + 9 = 13 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 113(2amp;−33amp;2)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =113(2amp;−33amp;2)(5−1)</p> <p>or, X = 113(10+315−2)</p> <p>or, X = 113(1313)</p> <p>or, X =(13131313)</p> <p>∴ X = (11)</p> <p>∴ x = 1 and y = 1 <sub>Ans</sub></p>
Q58:
Solve by matrix method:
3x + y = 51
4x - 3y = 3
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equation:</p> <p>3x + y = 51...........................(1)</p> <p>4x - 3y = 3............................(2)</p> <p>Given equation in matrix form:</p> <p>(3amp;14amp;−3)(xy) =(513), AX = B</p> <p>where, A =(3amp;14amp;−3), X = (xy) and B =(513)</p> <p>|A| =|3amp;14amp;−3| = 3 × (-3) - 4 × 1 = -9 - 4 = -13 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 1−13(−3amp;−1−4amp;3) =(313amp;113413amp;−313)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(313amp;113413amp;−313)(513)</p> <p>or, X =(15313amp;31320413amp;−913)</p> <p>or, X =(153+313204−913)</p> <p>or, X =(1561319513)</p> <p>∴ X =(125)</p> <p>∴ x = 12 and y = 5 <sub>Ans</sub></p> <p></p>
Q59:
Solve by matrix method:
2x - 5y = 1
7x + 3y = 24
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x - 5y = 1.................................(1)</p> <p>7x + 3y = 24.............................(2)</p> <p>Given equation in matrix form:</p> <p>(2amp;−57amp;3)(xy) =(124), AX = B</p> <p>where, A =(2amp;−57amp;3), X =(xy) and B =(124)</p> <p>|A| =|2amp;−57amp;3| = 2 × 3 - 7 × (-5) = 6 + 35 = 41 ≠ 0 </p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= 1|A| Adj.A = 141(3amp;5−7amp;2) =(341amp;541−741amp;241)</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =(341amp;541−741amp;241)(124)</p> <p>or, X =\begin {pmatrix} \frac {3 × 1}{41} & \frac {5 × 24}{41}\\ \frac {-7 × 1}{41} & \frac {2 × 24}{41}\\ \end {pmatrix}</p> <p>or, X =(341amp;12041−741amp;4841)</p> <p>or, X =(3+12041−7+4841)</p> <p>or, X =(123414141)</p> <p>∴ X =|31|</p> <p>∴ x = 3 and y = 1 <sub>Ans</sub></p> <p></p>
Q60:
Solve by matrix method;
x - 8y = 39
2x - 3y - 13 = 0
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x - 8y = 39..........................................(1)</p> <p>2x - 3y = 13.......................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 1 & -8\\ 2 & -3\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 39\\ 13\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 1 & -8\\ 2 & -3\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 39\\ 13\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 1 & -8\\ 2 & -3\\ \end {vmatrix} = 1 × (-3) - 2 × (-8) = -3 + 16 = 13 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{13}\begin {pmatrix} -3 & -8\\ -2 & 1\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX =B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\frac {1}{13}\begin {pmatrix} -3 & -8\\ -2 & 1\\ \end {pmatrix}\begin {pmatrix} 39\\ 13\\ \end {pmatrix}</p> <p>or, X = \frac {1}{13}\begin {pmatrix} -117 + 104\\ -78 + 13\\ \end {pmatrix}</p> <p>or, X = \frac {1}{13}\begin {pmatrix} -13\\ -65\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {-13}{13}\\ \frac {-65}{13}\\ \end {pmatrix}</p> <p>∴ X = \begin {pmatrix} -1\\ -5\\ \end {pmatrix}</p> <p>∴ x = -1 and y = -5 <sub>Ans</sub></p>
Q61:
Solve by matrix method:
\frac 2x + \frac 3y = 2
\frac 4x - \frac 9y = -1
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 2x + \frac 3y = 2..............................................(1)</p> <p>\frac 4x - \frac 9y = -1.............................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 2 & 3\\ 4 & -9\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} =\begin {pmatrix} 2\\ -1\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 2 & 3\\ 4 & -9\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} and B = \begin {pmatrix} 2\\ -1\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 2 & 3\\ 4 & -9\\ \end {vmatrix} = 2 × (-9) - 4 × 3 = -18 - 12 = -30 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-30}\begin {pmatrix} -9 & -3\\ -4 & 2\\ \end {pmatrix} =\begin {pmatrix} \frac {9}{30} & \frac {3}{30}\\ \frac {4}{30} & \frac {-2}{30}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {9}{30} & \frac {3}{30}\\ \frac {4}{30} & \frac {-2}{30}\\ \end {pmatrix}\begin {pmatrix} 2\\ -1\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {9×2}{30} - \frac {3×1}{30}\\ \frac {4×2}{30} + \frac {2×1}{30}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {18-3}{30}\\ \frac {8+2}{30}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {15}{30}\\ \frac {10}{30}\\ \end {pmatrix}</p> <p>∴ X = \begin {pmatrix} \frac 12\\ \frac 13\\ \end {pmatrix}</p> <p>i.e.\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} =\begin {pmatrix} \frac 12\\ \frac 13\\ \end {pmatrix}</p> <p>Taking the corresponding part of the equal matrix:</p> <p>\frac 1x = \frac 12</p> <p>∴ x = 2</p> <p>\frac 1y = \frac 13</p> <p>∴ y = 3</p> <p>∴ x = 2 and y = 3 <sub>Ans</sub></p>
Q62:
Solve by matrix method:
\frac {3x + 5y}{4} = \frac {7x + 3y}{5} = 4
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>\frac {3x + 5y}{4} =4, \frac {7x + 3y}{5} = 4</p> <p>3x + 5y = 16..............................(1)</p> <p>7x + 3y = 20..............................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 3 & 5\\ 7 & 3\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 16\\ 20\\ \end {pmatrix}, AX =B</p> <p>where, A =\begin {pmatrix} 3 & 5\\ 7 & 3\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 16\\ 20\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 3 & 5\\ 7 & 3\\ \end {vmatrix} = 3 × 3 - 7 × 5 = 9 - 35 = -26 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-26}\begin {pmatrix} 3 & -5\\ -7 & 3\\ \end {pmatrix}</p> <p>We know that:</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\frac {1}{-26}\begin {pmatrix} 3 & -5\\ -7 & 3\\ \end {pmatrix}\begin {pmatrix} 16\\ 20\\ \end {pmatrix}</p> <p>or, X =\frac {1}{-26}\begin {pmatrix} 48 - 100\\ -112 + 60\\ \end {pmatrix}</p> <p>or, X =\frac {1}{-26}\begin {pmatrix} -52\\ -52\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {-52}{-26}\\ \frac {-52}{-26}\\ \end {pmatrix}</p> <p>∴ X =\begin {pmatrix} 2\\ 2\\ \end {pmatrix}</p> <p>∴ x = 2 and y = 2 <sub>Ans</sub></p>
Q63:
Solve the equation by matrix method: x = \frac 23y and 4x - 3y = 1.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equations are:</p> <p>x = \frac 23y i.e. 3x - 2y = 0................(1)</p> <p>4x - 3y = 1............................(2)</p> <p>Given equation in matrix form;</p> <p>\begin {pmatrix} 3 & -2\\ 4 & -3\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 0\\ 1\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 3 & -2\\ 4 & -3\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 0\\ 1\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 3 & -2\\ 4 & -3\\ \end {vmatrix} = 3 × -3 - 4 × -2 = -9 + 8 = -1 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-1}\begin {pmatrix} -3 & -2\\ -4 & 3\\ \end {pmatrix} = \begin {pmatrix} 3 & 2\\ 4 & -3\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} 3 & 2\\ 4 & -3\\ \end {pmatrix}\begin {pmatrix} 0\\ 1\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} 3 × 0 + 2 × 1\\ 4 × 0 - 3 × 1\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} 0 + 2\\ 0 - 3\\ \end {pmatrix}</p> <p>∴ X =\begin {pmatrix} 2\\ -3\\ \end {pmatrix}</p> <p>∴ x = 2 and y = -3 <sub>Ans</sub></p>
Q64:
Solve by matrix method:
\frac 4x + 3y = 11
3xy - 8 - 5x = 0
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 4x + 3y = 11.................................(1)</p> <p>3xy - 8 -5x = 0</p> <p>or, \frac {3xy}{x} - \frac 8x - \frac {5x}{x} = 0</p> <p>or, -\frac 8x + 3y = 5...................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 4 & 3\\ -8 & 3\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 4 & 3\\ -8 & 3\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 4 & 3\\ -8 & 3\\ \end {vmatrix} = 4 × 3 - (-8) × 3 = 12 + 24 = 36 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{36}\begin {pmatrix} 3 & -3\\ 8 & 4\\ \end {pmatrix} =\begin {pmatrix} \frac {3}{36} & \frac {-3}{36}\\ \frac {8}{36} & \frac {4}{36}\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{12} & \frac {-1}{12}\\ \frac {2}{9} & \frac {1}{9}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{12} & \frac {-1}{12}\\ \frac {2}{9} & \frac {1}{9}\\ \end {pmatrix}\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {11}{12} & \frac {-5}{12}\\ \frac {22}{9} & \frac {5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {11 - 5}{12}\\ \frac {22 + 5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {6}{12}\\ \frac {27}{9}\\ \end {pmatrix}</p> <p>∴X = \begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>i.e.\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>Taking the corresponding part of the equal matrix:</p> <p>\frac 1x = \frac 12</p> <p>∴ x = 2</p> <p>∴ y = 3</p> <p>∴ x = 2 and y = 3 <sub>Ans</sub></p> <p></p>
Q65:
Solve by matrix method:
\frac 4x + 3y = 11
3xy - 8 - 5x = 0
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 4x + 3y = 11.................................(1)</p> <p>3xy - 8 -5x = 0</p> <p>or, \frac {3xy}{x} - \frac 8x - \frac {5x}{x} = 0</p> <p>or, -\frac 8x + 3y = 5...................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 4 & 3\\ -8 & 3\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 4 & 3\\ -8 & 3\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 4 & 3\\ -8 & 3\\ \end {vmatrix} = 4 × 3 - (-8) × 3 = 12 + 24 = 36 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{36}\begin {pmatrix} 3 & -3\\ 8 & 4\\ \end {pmatrix} =\begin {pmatrix} \frac {3}{36} & \frac {-3}{36}\\ \frac {8}{36} & \frac {4}{36}\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{12} & \frac {-1}{12}\\ \frac {2}{9} & \frac {1}{9}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{12} & \frac {-1}{12}\\ \frac {2}{9} & \frac {1}{9}\\ \end {pmatrix}\begin {pmatrix} 11\\ 5\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {11}{12} & \frac {-5}{12}\\ \frac {22}{9} & \frac {5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {11 - 5}{12}\\ \frac {22 + 5}{9}\\ \end {pmatrix}</p> <p>or, X = \begin {pmatrix} \frac {6}{12}\\ \frac {27}{9}\\ \end {pmatrix}</p> <p>∴X = \begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>i.e.\begin {pmatrix} \frac 1x\\ y\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{2}\\ 3\\ \end {pmatrix}</p> <p>Taking the corresponding part of the equal matrix:</p> <p>\frac 1x = \frac 12</p> <p>∴ x = 2</p> <p>∴ y = 3</p> <p>∴ x = 2 and y = 3 <sub>Ans</sub></p> <p></p>
Q66:
Solve by matrix method:
4x + \frac y5 = 7
3x + \frac y4 = 5
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>4x + \frac y5 = 7</p> <p>or, \frac {20x + y}{5} = 7</p> <p>or, 20x + y = 35.........................................(1)</p> <p>3x + \frac y4 = 5</p> <p>or, \frac {12x + y}{4} = 5</p> <p>or, 12x + y = 20..........................................(2)</p> <p>Given equation in matrix form:</p> <p>\begin {pmatrix} 20 & 1\\ 12 & 1\\ \end {pmatrix}\begin {pmatrix} x\\ y\\ \end {pmatrix} =\begin {pmatrix} 35\\ 20\\ \end {pmatrix}, AX =B</p> <p>where, A =\begin {pmatrix} 20 & 1\\ 12 & 1\\ \end {pmatrix}, X =\begin {pmatrix} x\\ y\\ \end {pmatrix} and B =\begin {pmatrix} 35\\ 20\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 20 & 1\\ 12 & 1\\ \end {vmatrix} = 20 × 1 - 12 × 1 = 20 - 12 = 8 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{8}\begin {pmatrix} 1 & -1\\ -12 & 20\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{8} & \frac {-1}{8}\\ \frac {-12}{8} & \frac {20}{8}\\ \end {pmatrix} = \begin {pmatrix} \frac {1}{8} & \frac {-1}{8}\\ \frac {-3}{2} & \frac {5}{2}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>or, X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{8} & \frac {-1}{8}\\ \frac {-3}{2} & \frac {5}{2}\\ \end {pmatrix}\begin {pmatrix} 35\\ 20\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {35}{8} - \frac {20}{8}\\ \frac {-105}{2} + \frac {100}{2}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {35 - 20}{8}\\ \frac {-105 + 100}{2}\\ \end {pmatrix}</p> <p>∴ X =\begin {pmatrix} \frac {15}{8}\\ \frac {-5}{2}\\ \end {pmatrix}</p> <p>∴ x = \frac {15}{2} and y = \frac {-5}{2} <sub>Ans</sub></p> <p></p>
Q67:
Solve by the matrix method:
\frac 3x + \frac 4y = 2
\frac 9x - \frac 2y = \frac 52
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>\frac 3x + \frac 4y = 2..........................................(1)</p> <p>\frac 9x - \frac 2y = \frac 52....................(2)</p> <p>Given equation in the form of matrix:</p> <p>\begin {pmatrix} 3 & 4\\ 9 & -2\\ \end {pmatrix}\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} =\begin {pmatrix} 2\\ \frac52\\ \end {pmatrix}, AX = B</p> <p>where, A =\begin {pmatrix} 3 & 4\\ 9 & -2\\ \end {pmatrix}, X =\begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} and B =\begin {pmatrix} 2\\ \frac52\\ \end {pmatrix}</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 3 & 4\\ 9 & -2\\ \end {vmatrix} = 3 × (-2) - 9 × 4 = -6 - 36 = -42 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-42}\begin {pmatrix} -2 & -4\\ -9 & 3\\ \end {pmatrix} = \begin {pmatrix} \frac {-2}{-42} & \frac {-4}{-42}\\ \frac {-9}{-42} & \frac {3}{-42}\\ \end {pmatrix} =\begin {pmatrix} \frac {1}{21} & \frac {2}{21}\\ \frac {9}{42} & \frac {3}{42}\\ \end {pmatrix}</p> <p>We know that:</p> <p>AX = B</p> <p>or, X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {1}{21} & \frac {2}{21}\\ \frac {9}{42} & \frac {3}{42}\\ \end {pmatrix}\begin {pmatrix} 2\\ \frac52\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {2}{21} + \frac {5}{21}\\ \frac {9}{21} - \frac {15}{84}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {2 + 5}{21}\\ \frac {36 - 15}{84}\\ \end {pmatrix}</p> <p>or, X =\begin {pmatrix} \frac {7}{21}\\ \frac {21}{84}\\ \end {pmatrix}</p> <p>∴ X =\begin {pmatrix} \frac {1}{3}\\ \frac {1}{4}\\ \end {pmatrix}</p> <p>i.e. \begin {pmatrix} \frac 1x\\ \frac1y\\ \end {pmatrix} = \begin {pmatrix} \frac {1}{3}\\ \frac {1}{4}\\ \end {pmatrix}</p> <p>Taking the corresponding parts of the equal matrix:</p> <p>\frac 1x = \frac 13</p> <p>∴ x = 3</p> <p>\frac 1y = \frac 14</p> <p>∴ y = 4</p> <p>∴ x = 3 and y = 4 <sub>Ans</sub></p> <p></p>
Q68:
Solve by matrix method:
In a company the men get Rs. 25 a day and the women get Rs. 20 a day. 50 people are employed and the total wages are Rs. 1150 a day. Find the member of men and women employed in the company?
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Suppose the number of men = x</p> <p>Suppose the number of women = y</p> <p>Now,</p> <p>1 men get Rs. 25 a day.</p> <p>x men get Rs. 25x a day.</p> <p>1 women get Rs. 20 a day.</p> <p>y women get Rs. 20y a day.</p> <p>According to the question,</p> <p>x + y = 50.....................................(1)</p> <p>25x + 20y = 1150...................(2)</p> <p>Equation (1) and (2) in matrix form:</p> <p>\begin {bmatrix} 1 & 1\\ 25 & 20\\ \end {bmatrix}\begin {bmatrix} x\\ y\\ \end {bmatrix} =\begin {bmatrix} 50\\ 1150\\ \end {bmatrix}</p> <p>where:</p> <p>A =\begin {bmatrix} 1 & 1\\ 25 & 20\\ \end {bmatrix} is a coefficient matrix.</p> <p>X =\begin {bmatrix} x\\ y\\ \end {bmatrix} is a variable matrix.</p> <p>B =\begin {bmatrix} 50\\ 1150\\ \end {bmatrix} is a constant matrix.</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 1 & 1\\ 25 & 20\\ \end {vmatrix} = 1 × 20 - 25 × 1 = 20 - 25 = -5 ≠ 0</p> <p>It has a unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-5}\begin {pmatrix} 20 & -1\\ -25 & 1\\ \end {pmatrix} =\begin {pmatrix} \frac {20}{-5} & \frac {-1}{-5}\\ \frac {-25}{-5} & \frac {1}{-5}\\ \end {pmatrix} = \begin {pmatrix} -4 & \frac {1}{5}\\ 5& \frac {1}{-5}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>or, X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} -4 & \frac {1}{5}\\ 5& \frac {1}{-5}\\ \end {pmatrix}\begin {bmatrix} 50\\ 1150\\ \end {bmatrix}</p> <p>or, X =\begin {bmatrix} -200 + 230\\ 250 - 230\\ \end {bmatrix}</p> <p>∴ X =\begin {bmatrix} 30\\ 20\\ \end {bmatrix}</p> <p>∴ x = 30 and y = 20 <sub>Ans</sub></p> <p></p>
Q69:
Solve by matrix method;
1 kg potatoes and 1 kg onions together cost Rs. 50.5 kg potatoes and 3 kg onions together cost Rs. 190. Find the cost of per kg potatoes and onions?
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Suppose the cost of potatoes for 1 kg be Rs. x and the cost of onions for 1 kg be Rs. y.</p> <p>Here,</p> <p>The cost of 1 kg potatoes be Rs. x.</p> <p>The cost of 5 kg potatoes be Rs. 5x.</p> <p>The cost of 1 kg onions be Rs. y.</p> <p>The cost of 1 kg onions be Rs. 3y.</p> <p>According to question:</p> <p>x + y = 50...................................(1)</p> <p>5x + 3y = 190..........................(2)</p> <p>Equation (1) and (2) can be written in matrix form.</p> <p>\begin {bmatrix} 1 & 1\\ 5 & 3\\ \end {bmatrix}\begin {bmatrix} x\\ y\\ \end {bmatrix} =\begin {bmatrix} 50\\ 190\\ \end {bmatrix}</p> <p>where:</p> <p>A =\begin {bmatrix} 1 & 1\\ 5 & 3\\ \end {bmatrix} is a coefficient matrix.</p> <p>X =\begin {bmatrix} x\\ y\\ \end {bmatrix} is a variable matrix.</p> <p>B =\begin {bmatrix} 50\\ 190\\ \end {bmatrix} is a constant matrix.</p> <p>\begin {vmatrix} A\\ \end {vmatrix} =\begin {vmatrix} 1 & 1\\ 5 & 3\\ \end {vmatrix} = 1 × 3 - 5 × 1 = 3 - 5 = -2 ≠ 0</p> <p>So, the system has unique solution.</p> <p>A<sup>-1</sup>= \frac {1}{\begin {vmatrix} A\\ \end {vmatrix}} Adj.A = \frac {1}{-2}\begin {pmatrix} 3 & -1\\ -5 & 1\\ \end {pmatrix} = \begin {pmatrix} \frac {-3}{2} & \frac {1}{2}\\ \frac {5}{2} & \frac {-1}{2}\\ \end {pmatrix}</p> <p>We know that,</p> <p>AX = B</p> <p>X = A<sup>-1</sup>B</p> <p>or, X =\begin {pmatrix} \frac {-3}{2} & \frac {1}{2}\\ \frac {5}{2} & \frac {-1}{2}\\ \end {pmatrix}\begin {bmatrix} 50\\ 190\\ \end {bmatrix}</p> <p>or, X =\begin {bmatrix} -75 + 95\\ 125 - 95\\ \end {bmatrix}</p> <p>∴ X =\begin {bmatrix} 20\\ 30\\ \end {bmatrix}</p> <p>∴x = 20 and y = 30</p> <p>Hence, the cost per kg potatoes is Rs. 20 and the cost per kg onions is Rs. 30. <sub>Ans</sub></p>