Subjective Questions
Q1:
Find the equation of the lines represented by:
3x2 - 5xy - 2y2 - x + 2y = 0
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>3x<sup>2</sup> - 5xy - 2y<sup>2</sup> - x + 2y = 0</p> <p>or, 3x<sup>2</sup> - 6xy + xy - 2y<sup>2</sup> - x + 2y = 0</p> <p>or, 3x(x - 2y) + y(x - 2y) - 1(x - 2y) = 0</p> <p>or, (x - 2y) (3x + y - 1) = 0</p> <p>Either: x - 2y = 0</p> <p>Or: 3x + y - 1 = 0</p> <p>∴ The required equations are: x - 2y = 0 and 3x + y - 1 = 0<sub>Ans</sub></p>
Q2:
Find the separate equation of the line given by equation:
x2 - 3xy + 2y2 = 0
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> - 3xy + 2y<sup>2</sup> = 0</p> <p>or, x<sup>2</sup> - 2xy - xy + 2y<sup>2</sup> = 0</p> <p>or, x(x - 2y) - y(x - 2y) = 0</p> <p>or, (x - 2y) (x - y) = 0</p> <p>Either: x - 2y = 0</p> <p>Or: x - y = 0</p> <p>∴ The required seperate equations are:x - 2y = 0 andx - y = 0 <sub>Ans</sub></p>
Q3:
Show that the straight lines represented by the equation 6x2 + 11xy - 6y2 = 0 are perpendicular to each other.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>The given equation is:6x<sup>2</sup> + 11xy - 6y<sup>2</sup> = 0..................(1)</p> <p>The homogeneous equation of second is: ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0.................(2)</p> <p>Comparing (1) and (2)</p> <p>a = 6</p> <p>2h = 11 i.e. h = \(\frac {11}2\)</p> <p>b = -6</p> <p>Now.</p> <p>a + b = 0</p> <p>or, 6 - 6 = 0</p> <p>∴ 0 = 0</p> <p>Hence, a + b = 0 is satisfied by the given equation so the equation6x<sup>2</sup> + 11xy - 6y<sup>2</sup> = 0 are perpendicular to each other. <sub>Proved</sub></p> <p></p>
Q4:
Prove that the straight lines represented by the equation x2 - 4xy + 4y2 = 0 are coincident to each other.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equation is:x<sup>2</sup> - 4xy + 4y<sup>2</sup> = 0......................(1)</p> <p>The homogenous equation of second degree is:</p> <p>ax<sup>2</sup>+ 2hxy + by<sup>2</sup> = 0...........................(2)</p> <p>Comparing (1) and (2)</p> <p>a = 1</p> <p>2h = -4 i.e. h = \(\frac {-4}2\) = -2</p> <p>b = 4</p> <p>Now,</p> <p>h<sup>2</sup> = ab</p> <p>or, (-2)<sup>2</sup> = 1× 4</p> <p>∴ 4 = 4</p> <p>Hence, h<sup>2</sup> = ab is satisfied by the given equation so the equationx<sup>2</sup> - 4xy + 4y<sup>2</sup> = 0 are coincident to each other. <sub>Proved</sub></p>
Q5:
Write down the condition for the lines represented by the equation ax2 + 2hxy + by2 = 0 to be coincident and perpendicular to each other.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0</p> <p>When: h<sup>2</sup> = ab then straight lines are coincident each other.</p> <p>When: a + b = 0 then straight lines are perpendicular each other.</p>
Q6:
Find the homogeneous equation of the second degree from the pair of lines:
x = 2y and 2x = y
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given eq<sup>n</sup> of line are:</p> <p>x = 2y</p> <p>i.e. x - 2y = 0..........................(1)</p> <p>2x = y</p> <p>i.e. 2x - y = 0..........................(2)</p> <p>Combined eq<sup>n</sup> of (1) and (2) is:</p> <p>(x - 2y) (2x - y) = 0</p> <p>or, 2x<sup>2</sup>- xy - 4xy + 2y<sup>2</sup> = 0</p> <p>or, 2x<sup>2</sup> - 5xy + 2y<sup>2</sup> = 0</p> <p>∴ The required eq<sup>n</sup> is: 2x<sup>2</sup> - 5xy + 2y<sup>2</sup> = 0 <sub>Ans</sub></p>
Q7:
Find a pair of eqn of straight lines represented by y2 = x2 and hence prove that they are perpendicular to each other.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given eq<sup>n</sup> is: y<sup>2</sup> = x<sup>2</sup></p> <p>or, x<sup>2</sup> - y<sup>2</sup> = 0</p> <p>or, (x - y) (x + y) = 0</p> <p>either: x + y = 0</p> <p>Or, x - y = 0</p> <p>Slope of eq<sup>n</sup> x + y = 0 is: m<sub>1</sub> = -\(\frac 11\) = -1</p> <p>Slope of eq<sup>n</sup> x -y = 0 is: m<sub>2</sub> = -\(\frac 1{-1}\) = 1</p> <p>m<sub>1</sub>× m<sub>2</sub> = -1× 1 = -1</p> <p>Hence, they are perpendicular to each other. <sub>Proved</sub></p>
Q8:
Prove that the angles between the lines represented by 6x2 - 5xy - 6y2 = 0 is at right angle.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given eq<sup>n</sup> is:</p> <p>6x<sup>2</sup> - 5xy - 6y<sup>2</sup> = 0...............................(1)</p> <p>The eq<sup>n</sup>of homogenous is:</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0..........................(2)</p> <p>Comparing eq<sup>n</sup> (1) and (2)</p> <p>a = 6</p> <p>b = -6</p> <p>Now,</p> <p>a + b = 0</p> <p>or, 6 - 6 = 0</p> <p>∴ 0 = 0</p> <p>Hence, the angle between two lines is 90°. <sub>Proved</sub></p>
Q9:
Find the angle between a pair of straight lines represented by the equation x2 - 2xy sec\(\alpha\) + y2 = 0.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given eq<sup>n</sup> is:</p> <p>x<sup>2</sup> - 2xy sec\(\alpha\) + y<sup>2</sup> = 0...........................(1)</p> <p>The homogenous eq<sup>n</sup> is:</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0..............................(2)</p> <p>Comparing eq<sup>n</sup> (1) and (2)</p> <p>a = 1</p> <p>h = - sec\(\alpha\)</p> <p>b = 1</p> <p>Now,</p> <p>tan\(\theta\) =± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\theta\) =± \(\frac {2\sqrt {(-sec\alpha)^2 - 1 × 1}}{1 + 1}\)</p> <p>or, tan\(\theta\) =± \(\frac {2\sqrt {sec^2\alpha - 1}}2\)</p> <p>or, tan\(\theta\) =± \(\sqrt {sec^2\alpha - 1}\)</p> <p>or, tan\(\theta\) =± \(\sqrt {tan^2\alpha}\)</p> <p>or, tan\(\theta\) =± tan\(\alpha\)</p> <p>∴ \(\theta\) = \(\alpha\) <sub>Ans</sub></p>
Q10:
Find a single equations representing the line pairs x cos\(\alpha\) +y sin\(\alpha\) = 0 and x sin\(\alpha\) + y cos\(\alpha\) = 0.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given eq<sup>n</sup> are:</p> <p>x cos\(\alpha\) + y sin\(\alpha\) = 0...................(1)</p> <p>x sin\(\alpha\) + y cos\(\alpha\) = 0...................(2)</p> <p>Combined eq<sup>n</sup> of (1) and (2)</p> <p>(x cos\(\alpha\) + y sin\(\alpha\)) (x sin\(\alpha\) + y cos\(\alpha\)) = 0</p> <p>or, x<sup>2</sup> cos\(\alpha\).sin\(\alpha\) +xy cos<sup>2</sup>\(\alpha\) + xy sin<sup>2</sup>\(\alpha\) + y<sup>2</sup> sin\(\alpha\).cos\(\alpha\) = 0</p> <p>or, x<sup>2</sup> cos\(\alpha\).sin\(\alpha\) + y<sup>2</sup> sin\(\alpha\).cos\(\alpha\) + xy (cos<sup>2</sup>\(\alpha\) + sin<sup>2</sup>\(\alpha\)) = 0</p> <p>or, sin\(\alpha\).cos\(\alpha\) (x<sup>2</sup> + y<sup>2</sup>) + xy× 1 = 0</p> <p>∴(x<sup>2</sup> + y<sup>2</sup>) sin\(\alpha\).cos\(\alpha\) + xy = 0 <sub>Ans</sub></p>
Q11:
Find the obtuse angle between a pair of lines represented by the equation:
x2 + 4xy + y2 = 0
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equation is:</p> <p>x<sup>2</sup> + 4xy + y<sup>2</sup> = 0.............................(1)</p> <p>The homogeneous equation of second degree is:</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0.....................(2)</p> <p>Comparing (1) and (2)</p> <p>a = 1</p> <p>h =2</p> <p>b = 1</p> <p>Now,</p> <p>tan\(\theta\) = ± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\theta\) = ± \(\frac {2\sqrt {2^2 - 1 × 1}}{1 + 1}\)</p> <p>or, tan\(\theta\) = ± \(\frac {2\sqrt {4 - 1}}2\)</p> <p>or, tan\(\theta\) = ± \(\sqrt 3\)</p> <p>∴ obtuse angle (\(\theta\) = tan<sup>-1</sup> (-\(\sqrt 3\))</p> <p>∴ \(\theta\) = (90 + 30)° = 120°<sub>Ans</sub></p>
Q12:
Find the angle between two straight lines represented by:
3x2 + 2y2 - 5xy = 0
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equation is:</p> <p>3x<sup>2</sup> + 2y<sup>2</sup> - 5xy = 0</p> <p>The homogeneous equation of second degree is:</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0.....................(2)</p> <p>Comparing (1) and (2)</p> <p>a = 1</p> <p>h =2</p> <p>b = 1</p> <p>Now,</p> <p>tan\(\theta\) = \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\theta\) = \(\frac {2\sqrt {(\frac {-5}2)^2 - 3 × 2}}{3 + 2}\)</p> <p>or, tan\(\theta\) = \(\frac {2\sqrt {\frac {25}4 - \frac 61}}5\)</p> <p>or, tan\(\theta\) = \(\frac {2\sqrt {\frac {25 - 24}4}}5\)</p> <p>or, tan\(\theta\) = \(\frac {2 × \frac 12}{\frac 51}\)</p> <p>or, tan\(\theta\) = \(\frac 15\)</p> <p>or, \(\theta\) = tan<sup>-1</sup>(\(\frac 15\))</p> <p>∴ \(\theta\) = 11.31° <sub>Ans</sub></p>
Q13:
Find the obtuse angle between the lines represented by the equation 12x2 - 23xy + 5y2 = 0.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>The given equation is:</p> <p>12x<sup>2</sup> - 23xy + 5y<sup>2</sup> = 0.....................(1)</p> <p>The homogeneous equation of second degree is:</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0.....................(2)</p> <p>Comparing (1) and (2)</p> <p>a =12</p> <p>h = -\(\frac {23}2\)</p> <p>b = 5</p> <p>Now,</p> <p>tan\(\theta\) = ±\(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or,tan\(\theta\) = ± \(\frac {2\sqrt {(\frac {-23}2)^2 - 12 × 5}}{12 + 5}\)</p> <p>or,tan\(\theta\) = ± \(\frac {2\sqrt {\frac {529}4 - 60}}{17}\)</p> <p>or,tan\(\theta\) = ± \(\frac {2\sqrt {\frac {529 - 240}4}}{17}\)</p> <p>or,tan\(\theta\) = ± \(\frac {2\sqrt {289}}2\)× \(\frac 1{17}\)</p> <p>or,tan\(\theta\) = ± \(\frac {17}{17}\)</p> <p>∴tan\(\theta\) = ± 1</p> <p>Taking +ve sign,</p> <p>tan\(\theta\) = 1</p> <p>or, tan\(\theta\) = tan 45°</p> <p>∴ \(\theta\) = 45°</p> <p>Taking -ve sign,</p> <p>tan\(\theta\) = -1</p> <p>or, tan\(\theta\) = tan (180 - 35)</p> <p>or, tan\(\theta\) = tan 135°</p> <p>∴ \(\theta\) = 135°</p> <p>Hence, the obtuse angle between the pair of equation is: 135°. <sub>Ans</sub></p> <p></p>
Q14:
Find the acute angle between the pair of lines through origin represented by homogeneous equation of the second degree 2x2 - 5xy + 2y2 = 0.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>The homogenous equation of second degree is:</p> <p>ax<sup>2</sup> + 2hxy +by<sup>2</sup> = 0................................(1)</p> <p>The given equation is:</p> <p>2x<sup>2</sup> - 5xy + 2y<sup>2</sup> = 0...................................(2)</p> <p>Comparing (1) and (2)</p> <p>a = 2</p> <p>2h = -5 i.e. h = -\(\frac 52\)</p> <p>b = 2</p> <p>If \(\theta\) be the angle between pair of lines:</p> <p>tan\(\theta\) =± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\theta\) =± \(\frac {2\sqrt {(\frac {-5}2)^2 - 2 × 2}}{2 + 2}\)</p> <p>or, tan\(\theta\) =± \(\frac {2\sqrt {\frac {25}4 - \frac 41}}4\)</p> <p>or, tan\(\theta\) =± \(\frac {\sqrt {\frac {25 - 16}4}}2\)</p> <p>or, tan\(\theta\) =± \(\sqrt {\frac 94}\)× \(\frac 12\)</p> <p>or, tan\(\theta\) =± \(\frac 32\)× \(\frac 12\)</p> <p>or, tan\(\theta\) =± \(\frac 34\)</p> <p>∴ \(\theta\) = tan<sup>-1</sup>(± \(\frac 34\))</p> <p>Hence, the acute angle (\(\theta\)) =tan<sup>-1</sup>(± \(\frac 34\)) <sub>Ans</sub></p>
Q15:
Find the separate equation of the lines contained by the equation 6x2 + 5xy - 3x - 2y - 6y2 = 0 and prove that two lines are perpendicular each other.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equation is:</p> <p>6x<sup>2</sup> + 5xy - 3x - 2y - 6y<sup>2</sup> = 0</p> <p>or, 6x<sup>2</sup> + 9xy - 4xy - 6y<sup>2</sup> - 3x - 2y = 0</p> <p>or, 3x (2x + 3y) - 2y (2x + 3y) - 1 (2x + 3y) = 0</p> <p>or, (2x + 3y) (3x - 2y - 1) = 0</p> <p>Either: 2x + 3y = 0..........................(1)</p> <p>Or: 3x - 2y - 1 = 0............................(2)</p> <p>Slope of equation (1), m<sub>1</sub> = -\(\frac 23\)</p> <p>Slope of equation (2), m<sub>2</sub> = \(\frac 32\)</p> <p>Again,</p> <p>m<sub>1</sub>× m<sub>2</sub> = \(\frac {-2}3\)× \(\frac 32\) = -1</p> <p>The product of two slopes = -1</p> <p>Hence, these equations are perpendicular each other. <sub>Hence, Proved</sub></p>
Q16:
To find the equation of a pair of straight lines through origin.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Let: the two equation of the lines through origin be:</p> <p>a<sub>1</sub>x + b<sub>1</sub>y = 0..............................(1)</p> <p>a<sub>2</sub>x + b<sub>2</sub>y = 0..............................(2)</p> <p>Combined equation of (1) and (2) is:</p> <p>(a<sub>1</sub>x + b<sub>1</sub>y) (a<sub>2</sub>x + b<sub>2</sub>y) = 0</p> <p>or, a<sub>1</sub>a<sub>2</sub>x<sup>2</sup> + a<sub>1</sub>b<sub>2</sub>xy + a<sub>2</sub>b<sub>1</sub>xy + b<sub>1</sub>b<sub>2</sub>y<sup>2</sup> = 0</p> <p>or,a<sub>1</sub>a<sub>2</sub>x<sup>2</sup> + (a<sub>1</sub>b<sub>2</sub>+ a<sub>2</sub>b<sub>1</sub>)<sub></sub>xy + b<sub>1</sub>b<sub>2</sub>y<sup>2</sup> = 0</p> <p>Let:</p> <p>a<sub>1</sub>a<sub>2</sub> = a</p> <p>b<sub>1</sub>b<sub>2</sub> = b</p> <p>(a<sub>1</sub>b<sub>2</sub>+ a<sub>2</sub>b<sub>1</sub>) = 2h</p> <p>Now,</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0</p> <p>Thus,ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0 is homogenous equation of second degree. <sub>Ans</sub></p>
Q17:
To prove that the homogenous equations of second degree ax2 + 2hxy + by2 = 0 always represents a pair of straight lines through origin.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>The given equation is: ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0 if a≠ 0, then:</p> <p>The given equation is multiplied by 'a' on both sides:</p> <p>a<sup>2</sup>x<sup>2</sup> + 2ahxy + aby<sup>2</sup> = 0</p> <p>or (ax)<sup>2</sup> + 2 (ax) (hy) + (hy)<sup>2</sup> - h<sup>2</sup>y<sup>2</sup> + aby<sup>2</sup> = 0</p> <p>or, (ax + hy)<sup>2</sup> - (h<sup>2</sup> - ab) y<sup>2</sup> = 0</p> <p>or, (ax + hy)<sup>2</sup> - {(\(\sqrt {(h^2 - ab)y})}<sup>2</sup> = 0</p> <p>or, (ax + hy + \(\sqrt {(h^2 - ab)y}\)) (ax + hy - \(\sqrt {(h^2 - ab)y}\)) = 0</p> <p>Either:(ax + hy + \(\sqrt {(h^2 - ab)y}\)) = 0.................(1)</p> <p>Or:(ax + hy - \(\sqrt {(h^2 - ab)y}\)) = 0..........................(2)</p> <p>Equation (1) and (2) are satisfied (0, 0) so both straight lines will passes through origin.</p> <p>Again,</p> <p>If a = 0</p> <p>The equation ax<sup>2</sup>+ 2hxy + by<sup>2</sup> = 0 will be</p> <p>2hxy + by<sup>2</sup> = 0</p> <p>or, y(2hx + by) = 0</p> <p>Either: y = 0.......................(3)</p> <p>Or: 2hx + by = 0..............(4)</p> <p>Equation (3) and (4) are satisfied by the co-ordinates (0, 0).</p> <p>Hence, the second degree homogeneous equation: ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0 always represents a pair of straight lines through the origin. <sub>Proved</sub></p>
Q18:
Find the angles between the pair of lines represented by the equation ax2 + 2hxy + by2 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equationax<sup>2</sup> + 2hxy + by<sup>2</sup>= 0 represents two straight lines that passes through the origin.</p> <p>Let: y = m<sub>1</sub>x and y = m<sub>2</sub>x are the two lines.</p> <p>y -m<sub>1</sub>x = 0............................(1)</p> <p>y - m<sub>2</sub>x = 0............................(2)</p> <p>Product of the equation (1) and (2) is:</p> <p>(y - m<sub>1</sub>x) (y - m<sub>2</sub>x) = 0</p> <p>or, m<sub>1</sub>m<sub>2</sub>x<sup>2</sup> - m<sub>1</sub>xy - m<sub>2</sub>xy + y<sup>2</sup> = 0</p> <p>or, m<sub>1</sub>m<sub>2</sub>x<sup>2</sup> - (m<sub>1 </sub>+m<sub>2</sub>)xy + y<sup>2</sup> = 0...................(3)</p> <p>Given equationax<sup>2</sup> + 2hxy + by<sup>2</sup>= 0</p> <p>\(\frac ab\)x<sup>2</sup> + \(\frac {2h}b\) xy + y<sup>2</sup> = 0...................(4)</p> <p>Comparing equation (3) and (4), we get:</p> <p>m<sub>1</sub> + m<sub>2</sub> = -\(\frac {2h}b\) and m<sub>1</sub>m<sub>2</sub> = \(\frac ab\)</p> <p>Let \(\theta\) be the angle between the lines:</p> <p>tan\(\theta\) =± \(\frac {m_1 - m_2}{1 + m_1m_2}\)</p> <p>or, tan\(\theta\) =± \(\frac {\sqrt {(m_1 + m_2)^2 - 4m_1m_2}}{1 + m_1m_2}\) [\(\because\) a - b = \(\sqrt {(a + b)^2 - 4ab}\)]</p> <p>or, tan\(\theta\) =± \(\frac {\sqrt {\frac {4h^2}{b^2} - \frac {4a}b}}{1 + \frac ab}\)</p> <p>or, tan\(\theta\) =± \(\frac {\sqrt {\frac {4h^2 - 4ab}{b^2}}}{\frac {b + a}b}\)</p> <p>or, tan\(\theta\) =± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)× \(\frac bb\)</p> <p>or, tan\(\theta\) =± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>∴\(\theta\) = tan<sup>-1</sup>(± \(\frac {2\sqrt {h^2 - ab}}{a + b}\))<sub> Ans</sub></p>
Q19:
Find the single equation passing through the point (1, 1) and parallel to the lines represented by the equation x2 - 5xy + 4y2 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> - 5xy + 4y<sup>2</sup> = 0</p> <p>or, x<sup>2</sup> - xy - 4xy + 4y<sup>2</sup> = 0</p> <p>or, x(x - y) - 4y(x - y) = 0</p> <p>or, (x - y) (x - 4y) = 0</p> <p>Either: x - y = 0.................(1)</p> <p>Or: x - 4y = 0......................(2)</p> <p>The eq<sup>n</sup> (1) changes into parallel form is:</p> <p>x - y + k<sub>1</sub> = 0......................(3)</p> <p>The point (1, 1) passes through eq<sup>n</sup> (1)</p> <p>1 - 1 + k<sub>1</sub> = 0</p> <p>∴ k<sub>1</sub> = 0</p> <p>Putting the value of k<sub>1</sub> in eq<sup>n</sup> (3)</p> <p>x - y + 0 = 0</p> <p>x - y = 0............................(4)</p> <p>The eq<sup>n</sup>(2) changes in parallel form is:</p> <p>x - 4y + k<sub>2</sub> = 0..................(5)</p> <p>The point (1, 1) passes through eq<sup>n</sup> (5)</p> <p>1 - 4× 1 + k<sub>2</sub> = 0</p> <p>or, -3 + k<sub>2</sub> = 0</p> <p>∴ k<sub>2</sub> = 3</p> <p>Putting the value of k<sub>2</sub> in eq<sup>n</sup> (5)</p> <p>x - 4y + 3 = 0.......................(6)</p> <p>The eq<sup>n</sup> of pair of line is:</p> <p>(x - y) (x - 4y + 3) = 0</p> <p>or, x<sup>2</sup> - 4xy + 3x - xy - 4y<sup>2</sup> - 3y = 0</p> <p>∴x<sup>2</sup> - 5xy - 4y<sup>2</sup> + 3x - 3y = 0<sub>Ans</sub></p>
Q20:
Find the single equation of pair of straight lines passing through the origin and perpendicular to the line pairs represented by x2 - xy - 2y2 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equation is:</p> <p>x<sup>2</sup> - xy - 2y<sup>2</sup> = 0</p> <p>or, x<sup>2</sup> - 2xy + xy - 2y<sup>2</sup> = 0</p> <p>or, x (x - 2y) + y (x - 2y) = 0</p> <p>or, (x - 2y) (x + y) = 0</p> <p>Either: x - 2y = 0.........................(1)</p> <p>Or: x + y = 0.................................(2)</p> <p>The eq<sup>n</sup> (1) changes in perpendicular form is:</p> <p>-2x - y + k<sub>1</sub> = 0</p> <p>2x + y - k<sub>1</sub> = 0..........................(3)</p> <p>The eq<sup>n</sup> (3) passes through origin (0, 0):</p> <p>2× 0 + 0 - k<sub>1</sub> = 0</p> <p>∴ k<sub>1</sub> = 0</p> <p>Putting the value of k<sub>1</sub> in eq<sup>n</sup> (3)</p> <p>2x + y - 0 = 0</p> <p>2x + y = 0........................(4)</p> <p>The eq<sup>n</sup> (2) change in perpendicular form is:</p> <p>x - y + k<sub>2</sub> = 0........................(5)</p> <p>The eq<sup>n</sup> (5) passes through origin (0, 0)</p> <p>0 - 0 + k<sub>2</sub> = 0</p> <p>∴ k<sub>2</sub> = 0</p> <p>Putting the value of k<sub>2</sub> in eq<sup>n</sup> (5)</p> <p>x - y + 0 = 0</p> <p>x - y = 0...........................(6)</p> <p>The equation of the pairs of lines is:</p> <p>(2x + y) (x - y) = 0</p> <p>or, 2x<sup>2</sup> - 2xy + xy - y<sup>2</sup> = 0</p> <p>∴2x<sup>2</sup> - xy - y<sup>2</sup> = 0<sub>Ans</sub></p>
Q21:
Find the single equation of the pair of straight lines passing through the point (2, 3) and perpendicular to the line 3x2 - 8xy + 5y2 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given eq<sup>n</sup> of line is:</p> <p>3x<sup>2</sup> - 8xy + 5y<sup>2</sup><sup></sup>= 0</p> <p>or, 3x<sup>2</sup> - 3xy - 5xy + 5y<sup>2</sup><sup></sup>= 0</p> <p>or, 3x (x - y) - 5y (x - y) = 0</p> <p>or, (x - y) (3x - 5y) = 0</p> <p>Either: x - y = 0.......................(1)</p> <p>Or: 3x - 5y = 0.........................(2)</p> <p>The eq<sup>n</sup> (1) changes in perpendicular form is:</p> <p>x + y + k<sub>1</sub> = 0...........................(3)</p> <p>The point (2, 3) passes through eq<sup>n</sup> (3)</p> <p>2 + 3 + k<sub>1</sub> = 0</p> <p>or, 5 + k<sub>1</sub> = 0</p> <p>∴ k<sub>1</sub> = -5</p> <p>Putting the value of k<sub>1</sub> in eq<sup>n</sup> (3)</p> <p>x + y - 5 = 0..........................(4)</p> <p>The eq<sup>n</sup> (2) change in perpendicular form is:</p> <p>5x + 3y + k<sub>2</sub> = 0...................(5)</p> <p>The point (2, 3) passes through eq<sup>n</sup> (5)</p> <p>5× 2 + 3× 3 + k<sub>2</sub> = 0</p> <p>or, 10 + 9 + k<sub>2</sub> = 0</p> <p>or, 19 + k<sub>2</sub> = 0</p> <p>∴ k<sub>2</sub> = - 19</p> <p>Putting the value of k<sub>2</sub> in eq<sup>n</sup> (5)</p> <p>5x + 3y - 19 = 0......................(6)</p> <p>The eq<sup>n</sup> of pairs of lines is:</p> <p>(x + y - 5) (5x + 3y - 19) = 0</p> <p>or, 5x<sup>2</sup> + 3xy - 19x + 5xy + 3y<sup>2</sup> - 19y - 25x - 15y + 95 = 0</p> <p>∴ 5x<sup>2</sup> + 8xy + 3y<sup>2</sup> - 44x - 34y + 95 = 0<sub>Ans</sub></p>
Q22:
Find the equation of two lines which passes through the point (3, -1) and perpendicular to the line pair x2 - xy - 2y2 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> - xy - 2y<sup>2</sup> = 0</p> <p>or, x<sup>2</sup> - 2xy + xy - 2y<sup>2</sup> = 0</p> <p>or, x(x - 2y) + y(x - 2y) = 0</p> <p>or, (x - 2y) (x + y) = 0</p> <p>Either: x - 2y = 0..................(1)</p> <p>Or: x + y = 0...........................(2)</p> <p>The eq<sup>n</sup> (1) change in perpendicular form is:</p> <p>2x + y + k<sub>1</sub> = 0.......................(3)</p> <p>The point (3, -1) passes through eq<sup>n</sup> (3)</p> <p>2× 3 - 1 + k<sub>1</sub> = 0</p> <p>or, 6 - 1 + k<sub>1</sub> = 0</p> <p>∴ k<sub>1</sub>= -5</p> <p>Putting the value of k<sub>1</sub> in eq<sup>n</sup> (3)</p> <p>2x + y - 5 = 0..........................(4)</p> <p>The eq<sup>n</sup> (2) change in perpendicular form is:</p> <p>x - y + k<sub>2</sub> = 0.........................(5)</p> <p>The point (3, -1) passes througheq<sup>n</sup> (5)</p> <p>3 + 1 + k<sub>2</sub> = 0</p> <p>∴ k<sub>2</sub> = -4</p> <p>Putting the value of k<sub>2</sub> in eq<sup>n</sup> (5)</p> <p>x - y - 4 = 0.........................(6)</p> <p>The eq<sup>n</sup> of pair of lines is:</p> <p>(2x + y - 5) (x - y - 4) = 0</p> <p>or, 2x<sup>2</sup> - 2xy - 8x + xy - y<sup>2</sup> - 4y - 5x + 5y + 20 = 0</p> <p>∴ 2x<sup>2</sup> - xy- y<sup>2</sup> - 13x + y + 20 = 0<sub>Ans</sub></p>
Q23:
Find the equation of the pair of lines represented by the equation 2x2 + 5xy + 3y2 = 0. Also find the angle between them.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x<sup>2</sup> + 5xy + 3y<sup>2</sup> = 0</p> <p>or, 2x<sup>2</sup> + 3xy + 2xy + 3y<sup>2</sup> = 0</p> <p>or, x(2x + 3y) + y(2x + 3y) = 0</p> <p>or, (2x + 3y) (x + y) = 0</p> <p>Either: 2x + 3y = 0</p> <p>Or: x + y = 0</p> <p>Given eq<sup>n</sup> is: 2x<sup>2</sup> + 5xy + 3y<sup>2</sup> = 0......................(1)</p> <p>Homogenous eq<sup>n</sup> is: ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0...................(2)</p> <p>Comparing eq<sup>n</sup> (1) and (2)</p> <p>a = 2</p> <p>h = \(\frac 52\)</p> <p>b = 3</p> <p>We know that:</p> <p>tan\(\theta\) =± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or,tan\(\theta\) =± \(\frac {2\sqrt {(\frac 52)^2 - 2 × 3}}{2 + 3}\)</p> <p>or, tan\(\theta\) =± \(\frac {2\sqrt {\frac {25}4 - 6}}5\)</p> <p>or,tan\(\theta\) =± \(\frac {2\sqrt {\frac {25 - 24}4}}5\)</p> <p>or,tan\(\theta\) =± \(\frac {2\sqrt {\frac 14}}5\)</p> <p>or,tan\(\theta\) =± \(\frac {2 × \frac 12}5\)</p> <p>or,tan\(\theta\) =± \(\frac 15\)</p> <p>Taking +ve sign,</p> <p>\(\theta\) = tan<sup>-1</sup> (\(\frac 15\)) = 11.31°</p> <p>Taking -vesign,</p> <p>\(\theta\) = (180° - 11.31°) = 168.69°</p> <p>∴ Required eq<sup>n</sup> are: 2x + 3y = 0 and x + y = 0 and angle between them are: 11.31° and 168.69°. <sub>Ans</sub></p>
Q24:
If \(\alpha\) be the angle made by the straight lines represented by the equation x2 + 2xy sec\(\theta\) + y2 = 0. Prove that: \(\alpha\) = \(\theta\). Find the pairs of equations of the lines.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given eq<sup>n</sup> is:x<sup>2</sup> + 2xy sec\(\theta\) + y<sup>2</sup> = 0........................(1)</p> <p>Homogenous eq<sup>n</sup> is: ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0..........(2)</p> <p>Comparingeq<sup>n</sup>(1) and (2)</p> <p>a = 1</p> <p>h = sec\(\theta\)</p> <p>b = 1</p> <p>If \(\alpha\) be the angle between pairs of lines then,</p> <p>tan\(\alpha\) = \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\alpha\) = \(\frac {2\sqrt {sec^2\theta - 1 × 1}}{1 + 1}\)</p> <p>or, tan\(\alpha\) = \(\frac {2\sqrt {sec^2\theta - 1}}2\)</p> <p>or, tan\(\alpha\) = \(\sqrt {tan^2\theta}\)</p> <p>or, tan\(\alpha\) = tan\(\theta\)</p> <p>∴\(\alpha\) = \(\theta\) <sub>Proved</sub></p> <p>Again,</p> <p>The given eq<sup>n</sup> is:</p> <p>y<sup>2</sup> + 2xy sec\(\theta\) + x<sup>2</sup> = 0..........................(3)</p> <p>The quadratic eq<sup>n</sup> is:</p> <p>ax<sup>2</sup> + bx + c = 0.............................(4)</p> <p>Comparing (3) and (4)</p> <p>a = 1</p> <p>b = 2x sec\(\theta\)</p> <p>c = x<sup>2</sup></p> <p>We know,</p> <p>x = \(\frac {-b ± \sqrt {b^2 - 4ac}}{2a}\)</p> <p>or, y = \(\frac {-(2x sec\theta) ± \sqrt {(2x sec\theta)^2 - 4 × 1 × x^2}}{2 × 1}\)</p> <p>or, y = \(\frac {-2x sec\theta ± \sqrt {4x^2 sec^2\theta - 4x^2}}2\)</p> <p>or, y = \(\frac {-2x sec\theta ± \sqrt {4x^2 (sec^2\theta - 1)}}2\)</p> <p>or, y = \(\frac {-2x sec\theta ± 2x\sqrt {tan^2\theta}}2\)</p> <p>or, y = \(\frac {-2x sec\theta ± 2x tan\theta}2\)</p> <p>or, y = \(\frac {2(-x sec\theta ± xtan\theta)}2\)</p> <p>or, y = - xsec\(\theta\)± x tan\(\theta\)</p> <p>Taking +ve sign:</p> <p>y = -xsec\(\theta\) + xtan\(\theta\)</p> <p>Taking -ve sign:</p> <p>y = -xsec\(\theta\) - xtan\(\theta\)</p> <p>∴ The required eq<sup>n</sup> are:y = -xsec\(\theta\) + xtan\(\theta\) andy = -xsec\(\theta\) - xtan\(\theta\) <sub>Ans</sub></p>
Q25:
Prove that the angle between the lines represented by the equation x2 - 2xy cosec\(\theta\) + y2 = 0 is (\(\frac p2\) - \(\theta\)).
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equation is:x<sup>2</sup> - 2xy cosec\(\theta\) + y<sup>2</sup> = 0.....................(1)</p> <p>Homogenous equation is: ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0......................(2)</p> <p>Comparing eq<sup>n</sup> (1) and (2)</p> <p>a = 1</p> <p>h = -cosec\(\theta\)</p> <p>b = 1</p> <p>If \(\alpha\) be the angle between pair of lines then:</p> <p>tan\(\alpha\) =± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\alpha\) =± \(\frac {2\sqrt {(-cosec\theta)^2 - 1 × 1}}{1 + 1}\)</p> <p>or, tan\(\alpha\) =± \(\frac {2\sqrt {(-cosec\theta)^2 - 1}}2\)</p> <p>or, tan\(\alpha\) =± \(\frac {2\sqrt {cosec^2\theta - 1}}2\)</p> <p>or, tan\(\alpha\) =± \(\sqrt {cot^2\theta}\)</p> <p>∴ tan\(\alpha\) =± cot\(\theta\)</p> <p>Taking +ve sign,</p> <p>tan\(\alpha\) = cot\(\theta\)</p> <p>tan\(\alpha\) = tan(\(\frac p2\) - \(\theta\))</p> <p>∴\(\alpha\) = (\(\frac p2\) - \(\theta\))<sub>Hence, Proved</sub></p>
Q26:
Find the equations of two lines represented by the equation 2x2 + 7xy + 3y2 = 0. Also find the angle between them.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equation is:</p> <p>2x<sup>2</sup> + 7xy + 3y<sup>2</sup> = 0</p> <p>or, 2x<sup>2</sup> + 6xy + xy + 3y<sup>2</sup> = 0</p> <p>or, 2x(x + 3y) + y(x + 3y) = 0</p> <p>or, (x + 3y)(2x + y) = 0</p> <p>The two equation represented by2x<sup>2</sup> + 7xy + 3y<sup>2</sup> = 0 are:</p> <p>2x + y = 0......................(1)</p> <p>x + 3y = 0......................(2)</p> <p>Now,</p> <p>Slope of equation (1), m<sub>1</sub> = -\(\frac {x-coefficient}{y-coefficient}\) = -2</p> <p>Slope of equation (2),m<sub>2</sub> =-\(\frac {x-coefficient}{y-coefficient}\) = -\(\frac 13\)</p> <p>If the angle between the lines be \(\theta\) then:</p> <p>tan\(\theta\) =± \(\frac {m_1 - m_2}{1 + m_1m_2}\)</p> <p>or, tan\(\theta\) =± \(\frac {-2 + \frac 13}{1 + (-2) (-\frac 13)}\)</p> <p>or, tan\(\theta\) = ± \(\frac {\frac {-6 + 1}3}{\frac {3 + 2}3}\)</p> <p>or, tan\(\theta\) = ± \(\frac {-5}3\)× \(\frac 35\)</p> <p>or, tan\(\theta\) = ± 1</p> <p>Taking +ve sign,</p> <p>tan\(\theta\) = tan 45°</p> <p>∴ \(\theta\) = 45°</p> <p>Taking -ve sign,</p> <p>tan\(\theta\) = tan (180 - 45)° = tan 135°</p> <p>∴ \(\theta\) = 135°</p> <p>∴ Required angles (\(\theta\)) = 45° and 135°<sub>Ans</sub></p>
Q27:
Find the equation of a pair of lines represented by the equation 2x2 + 3xy - 2y2 = 0. Also find the angle between them.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>The given equation is:</p> <p>2x<sup>2</sup> + 3xy - 2y<sup>2</sup> = 0</p> <p>or, 2x<sup>2</sup> + 4xy - xy - 2y<sup>2</sup> = 0</p> <p>or, 2x(x + 2y) - y(x + 2y) = 0</p> <p>or, (x + 2y) (2x - y) = 0</p> <p>∴ Equation are: x + 2y = 0 and 2x - y = 0</p> <p>Again,</p> <p>2x<sup>2</sup> + 3xy - 2y<sup>2</sup> = 0............................(1)</p> <p>The homogenous equation of second degree is:</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0........................(2)</p> <p>Comparingequation (1) and (2)</p> <p>a = 2</p> <p>h = \(\frac 32\)</p> <p>b = -2</p> <p>tan\(\theta\) = \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\theta\) = \(\frac {2\sqrt {(\frac 32)^2 - 2 × (-2)}}{2 + (-2)}\)</p> <p>or, tan\(\theta\) = \(\frac {2\sqrt {\frac 94 + \frac 41}}{2 - 2}\)</p> <p>or, tan\(\theta\) = \(\frac {2\sqrt {\frac {9 + 16}4}}0\)</p> <p>or, tan\(\theta\) =∞</p> <p>∴ \(\theta\) = tan<sup>-1</sup>∞ = 90°</p> <p>∴ The required equations are: x + 2y = 0 and 2x - y = 0 and angle between the pairs of straight lines is 90°.<sub>Ans</sub></p> <p></p>
Q28:
Find the obtuse angle between the pair of lines represented by the equation 2x2 - 3xy + y2 = 0. Also find the pair of lines.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equation is:</p> <p></p> <p>2x<sup>2</sup>- 3xy + y<sup>2</sup> = 0......................(1)</p> <p>The homogenous equation of second degree is:</p> <p>ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0..................(2)</p> <p>Comparing equation (1) and (2)</p> <p>a = 2</p> <p>h = -\(\frac 32\)</p> <p>b =1</p> <p>Now,</p> <p>tan\(\theta\) = ± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tan\(\theta\) = ± \(\frac {2\sqrt {(\frac {-3}2)^2 - 2 × 1}}{2 + 1}\)</p> <p>or, tan\(\theta\) = ± \(\frac {2\sqrt {\frac 94 - \frac 21}}3\)</p> <p>or, tan\(\theta\) = ± \(\frac {2\sqrt {\frac {9 - 8}4}}3\)</p> <p>or, tan\(\theta\) = ± \(\frac {2 × \frac 12}3\)</p> <p>or, tan\(\theta\) = ± \(\frac 13\)</p> <p>For the obtuse angle,</p> <p>tan\(\theta\) = -\(\frac 13\)</p> <p>\(\theta\) = tan<sup>-1</sup> (\(\frac 13\))</p> <p>Now,</p> <p>2x<sup>2</sup> - 3xy + y<sup>2</sup> = 0</p> <p>or, 2x<sup>2</sup> - 2xy - xy + y<sup>2</sup> = 0</p> <p>or, 2x(x - y) - y(x - y) = 0</p> <p>or, (x - y) (2x - y) = 0</p> <p>∴ The required pairs of lines are: x - y = 0 and 2x - y = 0. <sub>Ans</sub></p>
Q29:
Find separate equation of the lines contained by the equation 6x2 + 5xy - 3x + 2y - 6y2 = 0 and show that the lines are perpendicular to each other.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>6x<sup>2</sup> + 5xy - 3x + 2y - 6y<sup>2</sup> = 0</p> <p>or, 6x<sup>2</sup> + 5xy - 6y<sup>2</sup> - 3x + 2y = 0</p> <p>or, 6x<sup>2</sup> + 9xy - 4xy - 6y<sup>2</sup> - 3x + 2y = 0</p> <p>or, 3x(2x + 3y) - 2y(2x + 3y) - 1(3x - 2y) = 0</p> <p>or, (2x + 3y - 1) (3x - 2y) = 0</p> <p>Either: 2x + 3y - 1 = 0...........(1)</p> <p>Or: 3x - 2y = 0.........................(2)</p> <p>Slope of equation (1), m<sub>1</sub> = \(\frac {-3}{-2}\) = \(\frac 32\)</p> <p>Slope of equation (2),m<sub>2</sub> = -\(\frac 23\)</p> <p>∴ m<sub>1</sub>× m<sub>2</sub> = \(\frac 32\)× \(\frac {-2}3\) = -1</p> <p>Hence, the product of two slopes = -1 so these equations are perpendicular to each other. <sub>Proved</sub></p>
Q30:
Find the equation of the pair of lines represented by the equation x2 - 2xy cosec\(\theta\) + y2 = 0. Also find the angle between them.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>The given equation is:</p> <p>x<sup>2</sup> - 2xy cosec\(\theta\) + y<sup>2</sup> = 0</p> <p>or, (y)<sup>2</sup> - (2x cosec\(\theta\)) y + (x)<sup>2</sup> = 0..................(1)</p> <p>The quadratic equation is:</p> <p>ax<sup>2</sup> + bx + c = 0......................(2)</p> <p>Comparing (1) and (2)</p> <p>a = 1</p> <p>b = -2x cosec\(\theta\)</p> <p>c = x<sup>2</sup></p> <p>x = \(\frac {-b ± \sqrt {b^2 - 4ac}}{2a}\)</p> <p>y = -(-2x cosec\(\theta\))± \(\frac {\sqrt {(-2x cosec\theta)^2 - 4(1) (x^2)}}{2× 1}\)</p> <p>y = \(\frac {2x cosec\theta ± \sqrt {4x^2 cosec^2\theta - 4x^2}}2\)</p> <p>y = \(\frac {2x cosec\theta ± 2x \sqrt {cosec^2\theta - 1}}2\)</p> <p>y = \(\frac {2(x cosec\theta ± x cot\theta)}2\)</p> <p>y = x cosec\(\theta\)± x cot\(\theta\)</p> <p>The pair of lines are:</p> <p>y - x (cosec\(\theta\) - cot\(\theta\)) = 0 and</p> <p>y - x (cosec\(\theta\) + cot\(\theta\)) = 0</p> <p>Comparing x<sup>2</sup> -2xy cosec\(\theta\) + y<sup>2</sup> = 0 and ax<sup>2</sup> + 2hxy + by<sup>2</sup> = 0</p> <p>a = 1</p> <p>h = - cosec\(\theta\)</p> <p>b = 1</p> <p>We know that:</p> <p>tanA =± \(\frac {2\sqrt {h^2 - ab}}{a + b}\)</p> <p>or, tanA = ± \(\frac {2\sqrt {(-cosec\theta)^2 - 1 × 1}}{1 + 1}\)</p> <p>or, tanA =± \(\frac {2\sqrt {cosec^2\theta - 1}}2\)</p> <p>or, tanA =± cot\(\theta\)</p> <p>∴ A = tan<sup>-1</sup> (± cot\(\theta\))</p> <p>∴ The required equations are: y - x (cosec\(\theta\) - cot\(\theta\)) = 0 and y - x (cosec\(\theta\) + cot\(\theta\)) = 0 and angle (A) = tan<sup>-1</sup> (± cot\(\theta\)). <sub>Ans</sub></p>