Subjective Questions
Q1:
Find the standard deviation from the data given below:
12, 25, 29, 37, 41, 45, 49
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="333"><tbody><tr><td>x</td> <td>d = x - \(\overline{X}\)</td> <td>d<sup>2</sup></td> </tr><tr><td>12</td> <td>-22</td> <td>484</td> </tr><tr><td>25</td> <td>-9</td> <td>81</td> </tr><tr><td>29</td> <td>-5</td> <td>25</td> </tr><tr><td>37</td> <td>3</td> <td>9</td> </tr><tr><td>41</td> <td>7</td> <td>49</td> </tr><tr><td>45</td> <td>11</td> <td>121</td> </tr><tr><td>49</td> <td>15</td> <td>225</td> </tr><tr><td>\(\sum x\) = 238</td> <td></td> <td>\(\sum {d^2}\) = 994</td> </tr></tbody></table><p>Here,</p> <p>\(\sum x\) = 238</p> <p>N = 7</p> <p>Mean (\(\overline{X})\) = \(\frac {\sum{x}}N\) = \(\frac {238}7\) = 34</p> <p>\begin{align*} ∴ Standard\;Deviation\;(σ) &= \sqrt {\frac {\sum{d^2}}N}\\ &= \sqrt {\frac {994}7}\\ &= \sqrt {142}\\ &= 11.92_{Ans}\\ \end{align*}</p>
Q2:
Compute the standard deviation from the following data:
11, 14, 15, 17, 18
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given Data in ascending order is:</p> <p>11, 14, 15, 17, 18</p> <p>Let: Assumed mean (A) = 15</p> <p>Calculating Standard Deviation</p> <table width="315"><tbody><tr><td>Number (x)</td> <td>d = X - A</td> <td>d<sup>2</sup></td> </tr><tr><td>11</td> <td>-4</td> <td>16</td> </tr><tr><td>14</td> <td>-1</td> <td>1</td> </tr><tr><td>15</td> <td>0</td> <td>0</td> </tr><tr><td>17</td> <td>2</td> <td>4</td> </tr><tr><td>18</td> <td>3</td> <td>9</td> </tr><tr><td></td> <td>\(\sum d\) = 0</td> <td>\(\sum {d^2}\) = 30</td> </tr></tbody></table><p>\begin{align*}{\therefore}\;Standard \: Deviation \:(\sigma)&=\sqrt{\frac{\sum d^2}{N}- \left( \frac{\sum d}{N}\right)^2}\\&= \sqrt {\frac {30}{5}-(\frac {0}{5})^2}\\ &= \sqrt {6}\\ &= 2.45_{Ans}\end{align*}</p>
Q3:
Compute the standard deviation from the following data. Also find the coefficient of variation.
X |
12 |
13 |
14 |
15 |
16 |
17 |
f |
2 |
3 |
6 |
4 |
2 |
1 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="384"><tbody><tr><td>X</td> <td>f</td> <td>fx</td> <td>d = X - \(\overline{X}\)</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>12</td> <td>2</td> <td>24</td> <td>-2.2</td> <td>4.84</td> <td>9.68</td> </tr><tr><td>13</td> <td>3</td> <td>39</td> <td>-1.2</td> <td>1.44</td> <td>4.32</td> </tr><tr><td>14</td> <td>6</td> <td>84</td> <td>-0.2</td> <td>0.04</td> <td>0.24</td> </tr><tr><td>15</td> <td>4</td> <td>60</td> <td>0.8</td> <td>0.64</td> <td>2.56</td> </tr><tr><td>16</td> <td>2</td> <td>32</td> <td>1.8</td> <td>3.24</td> <td>6.56</td> </tr><tr><td>17</td> <td>1</td> <td>17</td> <td>2.8</td> <td>7.84</td> <td>7.84</td> </tr><tr><td></td> <td>N = 18</td> <td>\(\sum {fx}\) = 256</td> <td></td> <td></td> <td>\(\sum {fd^2}\) = 31.12</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum {fx}}N\\ &= \frac {256}{18}\\ &= 14.2\\ \end{align*}</p> <p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum {fd^2}}N}\\ &= \sqrt {\frac {31.12}{18}}\\ &= \sqrt {1.72}\\ &= 1.31_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;variation &= \frac {\sigma}{\overline{X}}\;×\;100\%\\ &= \frac {1.31}{14.2}\;×\;100\%\\ &= 9.23\%_{Ans}\\ \end{align*}</p>
Q4:
Find the standard deviation, under the following data:
Score (x) |
18 |
20 |
14 |
16 |
10 |
12 |
8 |
6 |
Frequency (f) |
4 |
2 |
18 |
9 |
25 |
27 |
14 |
1 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="423"><tbody><tr><td>Score (x)</td> <td>Frequency (f)</td> <td>fx</td> <td>d = x - \(\overline {X}\)</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>18</td> <td>4</td> <td>72</td> <td>6</td> <td>36</td> <td>144</td> </tr><tr><td>20</td> <td>2</td> <td>40</td> <td>8</td> <td>64</td> <td>128</td> </tr><tr><td>14</td> <td>18</td> <td>252</td> <td>2</td> <td>4</td> <td>72</td> </tr><tr><td>16</td> <td>9</td> <td>144</td> <td>4</td> <td>16</td> <td>144</td> </tr><tr><td>10</td> <td>25</td> <td>250</td> <td>-2</td> <td>4</td> <td>100</td> </tr><tr><td>12</td> <td>27</td> <td>324</td> <td>0</td> <td>0</td> <td>0</td> </tr><tr><td>8</td> <td>14</td> <td>112</td> <td>-4</td> <td>16</td> <td>224</td> </tr><tr><td>6</td> <td>1</td> <td>6</td> <td>-6</td> <td>36</td> <td>36</td> </tr><tr><td></td> <td>N = 100</td> <td>\(\sum {fx}\)= 1200</td> <td></td> <td></td> <td>\(\sum {fd^2}\) = 848</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline {X}) &= \frac {\sum {fx}}N\\ &= \frac {1200}{100}\\ &= 12\\ \end{align*}</p> <p>\begin{align*} \therefore\;Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum {fd^2}}N}\\ &= \sqrt {\frac {848}{100}}\\ &= \sqrt {8.48}\\ &= 2.91_{Ans}\\ \end{align*}</p>
Q5:
Compute the standard deviation from the following data:
Marks Secured |
5 |
10 |
15 |
20 |
25 |
30 |
No. of students |
2 |
3 |
5 |
6 |
3 |
1 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="404"><tbody><tr><td> <p>Marks</p> <p>(X)</p> </td> <td> <p>No. of students</p> <p>(f)</p> </td> <td>fx</td> <td>d = x - \(\overline {X}\)</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>5</td> <td>2</td> <td>10</td> <td>-12</td> <td>144</td> <td>288</td> </tr><tr><td>10</td> <td>3</td> <td>30</td> <td>-7</td> <td>49</td> <td>147</td> </tr><tr><td>15</td> <td>5</td> <td>75</td> <td>-2</td> <td>4</td> <td>20</td> </tr><tr><td>20</td> <td>6</td> <td>120</td> <td>3</td> <td>9</td> <td>54</td> </tr><tr><td>25</td> <td>3</td> <td>75</td> <td>8</td> <td>64</td> <td>192</td> </tr><tr><td>30</td> <td>1</td> <td>30</td> <td>13</td> <td>169</td> <td>169</td> </tr><tr><td></td> <td>N = 20</td> <td>\(\sum {fx}\) = 340</td> <td></td> <td></td> <td>\(\sum {fd^2}\) =870</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline {X})\; &= \frac {\sum {fx}}N\\ &= \frac {340}{20}\\ &= 17\\ \end{align*}</p> <p>\begin{align*} \therefore\;Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum {fd^2}}N}\\ &= \sqrt {\frac {870}{20}}\\ &= \sqrt {43.5}\\ &= 6.59_{Ans}\\ \end{align*}</p>
Q6:
Find the standard deviation of the given data:
X |
12 |
13 |
14 |
15 |
16 |
17 |
f |
2 |
3 |
6 |
4 |
2 |
1 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="411"><tbody><tr><td>X</td> <td>f</td> <td>fx</td> <td>fx<sup>2</sup></td> </tr><tr><td>12</td> <td>2</td> <td>24</td> <td>288</td> </tr><tr><td>13</td> <td>3</td> <td>39</td> <td>507</td> </tr><tr><td>14</td> <td>6</td> <td>84</td> <td>1176</td> </tr><tr><td>15</td> <td>4</td> <td>60</td> <td>900</td> </tr><tr><td>16</td> <td>2</td> <td>32</td> <td>512</td> </tr><tr><td>17</td> <td>1</td> <td>17</td> <td>289</td> </tr><tr><td></td> <td>N = 18</td> <td>\(\sum {fx}\) = 256</td> <td>\(\sum {fx^2}\) = 3672</td> </tr></tbody></table><p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fx^2}}N - (\frac {\sum {fx}}N)^2}\\ &= \sqrt {\frac {3672}{18} - (\frac {256}{18})^2}\\ &= \sqrt {204 - 202.27}\\ &= \sqrt {1.73}\\ &= 1.32_{Ans}\\ \end{align*}</p>
Q7:
Compute the standard deviation from the following data:
Height |
0-8 |
8-16 |
16-24 |
24-32 |
32-40 |
No. of plants |
6 |
7 |
10 |
8 |
9 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="447"><tbody><tr><td>Height</td> <td>No. of Plants (f)</td> <td>mid-value (m)</td> <td>fm</td> <td>d = m - \(\overline{X}\)</td> <td>fd<sup>2</sup></td> </tr><tr><td>0-8</td> <td>6</td> <td>4</td> <td>24</td> <td>-17.4</td> <td>1816.56</td> </tr><tr><td>8-16</td> <td>7</td> <td>12</td> <td>84</td> <td>-9.4</td> <td>618.52</td> </tr><tr><td>16-24</td> <td>10</td> <td>20</td> <td>200</td> <td>-1.4</td> <td>19.6</td> </tr><tr><td>24-32</td> <td>8</td> <td>28</td> <td>224</td> <td>6.6</td> <td>348.48</td> </tr><tr><td>32-40</td> <td>9</td> <td>36</td> <td>324</td> <td>14.6</td> <td>1918.44</td> </tr><tr><td></td> <td>N = 40</td> <td></td> <td>\(\sum{fm}\) = 856</td> <td></td> <td>\(\sum{fd^2}\) = 4721.6</td> </tr></tbody></table><p>\begin{align*} Mean\;({\overline {X}})\; &= \frac {\sum {fm}}N\\ &= \frac {856}{40}\\ &= 21.4\\ \end{align*}</p> <p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fd^2}}N}\\ &= \sqrt {\frac {4721.6}{40}}\\ &= 10.87_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;Variation\;(C.V.) &= \frac {\sigma}{\overline {X}} \times {100}\%\\ &= \frac {10.87}{21.4} \times {100}\%\\ &= 50.79\%_{Ans}\\ \end{align*}</p>
Q8:
Find the coefficient of standard deviation and coefficient of variation of the following data:
59, 71, 45, 44, 35, 21, 29, 49, 42, 37, 58, 69, 55, 39, 79, 50, 65, 52, 60, 64
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let: Assumed Mean (A) = 45</p> <p>Calculation of the Standard Deviation</p> <table width="525"><tbody><tr><td>Class Interval (x)</td> <td>Mid-value (m)</td> <td>Frequency (f)</td> <td>d = m - A</td> <td>d<sup>2</sup></td> <td>fd</td> <td>fd<sup>2</sup></td> </tr><tr><td>20-30</td> <td>25</td> <td>2</td> <td>-20</td> <td>400</td> <td>-40</td> <td>800</td> </tr><tr><td>30-40</td> <td>35</td> <td>3</td> <td>-10</td> <td>100</td> <td>-30</td> <td>300</td> </tr><tr><td>40-50</td> <td>45</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr><tr><td>50-60</td> <td>55</td> <td>5</td> <td>10</td> <td>100</td> <td>50</td> <td>500</td> </tr><tr><td>60-70</td> <td>65</td> <td>4</td> <td>20</td> <td>400</td> <td>80</td> <td>1600</td> </tr><tr><td>70-80</td> <td>75</td> <td>2</td> <td>30</td> <td>900</td> <td>60</td> <td>1800</td> </tr><tr><td></td> <td></td> <td>N = 20</td> <td></td> <td></td> <td>\(\sum{fd}\) = 120</td> <td>\(\sum{fd^2}\) = 5000</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= A + \frac {\sum {fd}}N\\ &= 45 + \frac {120}{20}\\ &= 45 + 6\\ &= 51\\ \end{align*}</p> <p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fx^2}}N - (\frac {\sum {fx}}N)^2}\\ &= \sqrt {\frac {5000}{20} - (\frac {120}{20})^2}\\ &= \sqrt {250 - 36}\\ &= \sqrt {214}\\ &= 14.63_{Ans}\\ \end{align*}</p> <p>\begin{align*} Coefficient\;of\;Variation\;(C.V.) &= \frac {\sigma}{\overline {X}} \times {100}\%\\ &= \frac {14.63}{51} \times {100}\%\\ &= 29\%_{Ans}\\ \end{align*}</p>
Q9:
Calculate the standard deviation from the following data:
Marks obtained |
10-20 |
20-30 |
30-40 |
40-50 |
50-60 |
No. of students |
4 |
6 |
10 |
3 |
2 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="485"><tbody><tr><td>Marks obtained</td> <td>Mid-value</td> <td>No. of students (f)</td> <td>fx</td> <td>d= X - \(\overline{X}\)</td> <td>fd</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>10-20</td> <td>15</td> <td>4</td> <td>60</td> <td>-17.5</td> <td>-70</td> <td>306.25</td> <td>1225</td> </tr><tr><td>20-30</td> <td>25</td> <td>6</td> <td>150</td> <td>-7.5</td> <td>-45</td> <td>56.25</td> <td>337.5</td> </tr><tr><td>30-40</td> <td>35</td> <td>10</td> <td>350</td> <td>2.5</td> <td>25</td> <td>6.25</td> <td>62.5</td> </tr><tr><td>40-50</td> <td>45</td> <td>3</td> <td>135</td> <td>12.5</td> <td>37.5</td> <td>156.25</td> <td>468.75</td> </tr><tr><td>50-60</td> <td>55</td> <td>2</td> <td>110</td> <td>22.5</td> <td>45</td> <td>506.25</td> <td>1012.5</td> </tr><tr><td></td> <td></td> <td>N = 25</td> <td>\(\sum{fx}\) = 805</td> <td></td> <td>\(\sum{fd}\) = 7.5</td> <td></td> <td>\(\sum{fd^2}\) = 3106.25</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fx}}{N}\\ &= \frac {805}{25}\\ &= 32.5\\ \end{align*}</p> <p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fx^2}}N - (\frac {\sum {fx}}N)^2}\\ &= \sqrt {\frac {3106.25}{25} - (\frac {-7.5}{25})^2}\\ &= \sqrt {124.25 - 0.09}\\ &= \sqrt {124.16}\\ &= 11.14_{Ans}\\ \end{align*}</p>
Q10:
Calculate the standard deviation from the table given below:
Daily Sales |
10-20 |
20-30 |
30-40 |
40-50 |
50-60 |
Frequency |
4 |
10 |
12 |
8 |
6 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let: Assumed Mean (A) = 35</p> <p>Calculating Standard Deviation</p> <table width="491"><tbody><tr><td>Daily Sales</td> <td>Mid-value(m)</td> <td>Frequency (f)</td> <td>d = \(\frac {x - A}{10}\)</td> <td>d<sup>2</sup></td> <td>fd</td> <td>fd<sup>2</sup></td> </tr><tr><td>10-20</td> <td>15</td> <td>4</td> <td>-2</td> <td>4</td> <td>-8</td> <td>16</td> </tr><tr><td>20-30</td> <td>25</td> <td>10</td> <td>-1</td> <td>1</td> <td>-10</td> <td>10</td> </tr><tr><td>30-40</td> <td>35</td> <td>12</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> </tr><tr><td>40-50</td> <td>45</td> <td>8</td> <td>1</td> <td>1</td> <td>8</td> <td>8</td> </tr><tr><td>50-60</td> <td>55</td> <td>6</td> <td>2</td> <td>4</td> <td>12</td> <td>24</td> </tr><tr><td></td> <td></td> <td>N = 40</td> <td></td> <td></td> <td>\(\sum {fd}\) = 2</td> <td>\(\sum{fd^2}\) = 58</td> </tr></tbody></table><p>\begin{align*}\therefore\;Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fx^2}}N - (\frac {\sum {fx}}N)^2}\;\times i\\ &= \sqrt {\frac {58}{40} - (\frac {2}{40})^2}\;\times {10}\\ &= \sqrt {1.45 - 0.0025}\;\times {10}\\ &= \sqrt {1.4475}\;\times {10}\\ &= 1.203\;\times{10}\\&= 12.03_{Ans}\\ \end{align*}</p>
Q11:
Compute the standard deviation of the following:
Class Interval |
0-4 |
4-8 |
8-12 |
12-16 |
16-20 |
20-24 |
Frequency |
7 |
7 |
10 |
15 |
7 |
6 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="507"><tbody><tr><td>Class Interval</td> <td>Mid-value (m)</td> <td>Frequency (f)</td> <td>fm</td> <td>fm<sup>2</sup></td> </tr><tr><td>0-4</td> <td>2</td> <td>7</td> <td>14</td> <td>28</td> </tr><tr><td>4-8</td> <td>6</td> <td>7</td> <td>42</td> <td>252</td> </tr><tr><td>8-12</td> <td>10</td> <td>10</td> <td>100</td> <td>1000</td> </tr><tr><td>12-16</td> <td>14</td> <td>15</td> <td>210</td> <td>2940</td> </tr><tr><td>16-20</td> <td>18</td> <td>7</td> <td>126</td> <td>2268</td> </tr><tr><td>20-24</td> <td>22</td> <td>6</td> <td>132</td> <td>2904</td> </tr><tr><td></td> <td></td> <td>N = 52</td> <td>\(\sum{fm}\) = 624</td> <td>\(\sum{fm^2}\) = 9392</td> </tr></tbody></table><p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fm^2}}N - (\frac {\sum {fm}}N)^2}\\ &= \sqrt {\frac {9392}{52} - (\frac {624}{52})^2}\\ &= \sqrt {180.61 - 144}\\ &= \sqrt {36.61}\\ &= 6.05_{Ans}\\ \end{align*}</p>
Q12:
Compute the standard deviation from the following data:
Marks secured |
10-20 |
20-30 |
30-40 |
40-50 |
50-60 |
No. of students |
8 |
12 |
15 |
9 |
6 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="420"><tbody><tr><td>Marks secured</td> <td>Mid-value (m)</td> <td>No. of Students (f)</td> <td>fm</td> <td>d = m - \(\overline{X}\)</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>10-20</td> <td>15</td> <td>8</td> <td>120</td> <td>-18.6</td> <td>345.96</td> <td>2767.68</td> </tr><tr><td>20-30</td> <td>25</td> <td>12</td> <td>300</td> <td>8.6</td> <td>73.96</td> <td>887.52</td> </tr><tr><td>30-40</td> <td>35</td> <td>15</td> <td>525</td> <td>1.4</td> <td>1.96</td> <td>29.4</td> </tr><tr><td>40-50</td> <td>45</td> <td>9</td> <td>405</td> <td>11.4</td> <td>129.96</td> <td>1169.64</td> </tr><tr><td>50-60</td> <td>55</td> <td>6</td> <td>330</td> <td>21.4</td> <td>457.96</td> <td>2747.76</td> </tr><tr><td></td> <td></td> <td>N = 50</td> <td>\(\sum {fm}\) = 1680</td> <td></td> <td></td> <td>\(\sum {fd^2}\) = 7602</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline {X}) &= \frac {\sum {fm}}N\\ &= \frac {1680}{50}\\ &= 33.6\\ \end{align*}</p> <p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum {fd^2}}N}\\ &= \sqrt {\frac {7602}{50}}\\ &= \sqrt {152.04}\\ &= 12.33_{Ans}\\ \end{align*}</p>
Q13:
Compute the standard deviation from the following data:
Marks obtained |
0-20 |
20-30 |
30-40 |
40-50 |
50-60 |
No. of students |
2 |
8 |
16 |
10 |
4 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="440"><tbody><tr><td>Marks Secured</td> <td>Mid-value (m)</td> <td>No. of students (f)</td> <td>fm</td> <td>d= m - \(\overline {X}\)</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>0-20</td> <td>10</td> <td>2</td> <td>20</td> <td>-43</td> <td>1849</td> <td>3698</td> </tr><tr><td>20-40</td> <td>30</td> <td>8</td> <td>240</td> <td>-23</td> <td>529</td> <td>4232</td> </tr><tr><td>40-60</td> <td>50</td> <td>16</td> <td>800</td> <td>-3</td> <td>9</td> <td>144</td> </tr><tr><td>60-80</td> <td>70</td> <td>10</td> <td>700</td> <td>17</td> <td>289</td> <td>2890</td> </tr><tr><td>80-100</td> <td>90</td> <td>4</td> <td>360</td> <td>37</td> <td>1369</td> <td>5476</td> </tr><tr><td></td> <td></td> <td>N = 40</td> <td>\(\sum {fm}\) = 2120</td> <td></td> <td></td> <td>\(\sum{fd^2}\) = 16440</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fm}}N\\ &= \frac {2120}{40}\\ &= 53\\ \end{align*}</p> <p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fd^2}}N}\\ &= \sqrt {\frac {16440}{40}}\\ &= \sqrt {411}\\ &= 20.27_{Ans}\\ \end{align*}</p>
Q14:
Compute the standard deviation from the following data:
Weight in kg. |
10-20 |
20-30 |
30-40 |
40-50 |
50-60 |
60-70 |
No. of boys |
2 |
5 |
6 |
3 |
2 |
2 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="430"><tbody><tr><td>Weight in kg.</td> <td>No. of boys (f)</td> <td>Mid-value (m)</td> <td>fm</td> <td>d = m - \(\overline{X}\)</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>10-20</td> <td>2</td> <td>15</td> <td>30</td> <td>-22</td> <td>484</td> <td>968</td> </tr><tr><td>20-30</td> <td>5</td> <td>25</td> <td>125</td> <td>-12</td> <td>144</td> <td>720</td> </tr><tr><td>30-40</td> <td>6</td> <td>35</td> <td>210</td> <td>-2</td> <td>4</td> <td>24</td> </tr><tr><td>40-50</td> <td>3</td> <td>45</td> <td>135</td> <td>8</td> <td>64</td> <td>192</td> </tr><tr><td>50-60</td> <td>2</td> <td>55</td> <td>110</td> <td>18</td> <td>324</td> <td>648</td> </tr><tr><td>60-70</td> <td>2</td> <td>65</td> <td>130</td> <td>28</td> <td>784</td> <td>1568</td> </tr><tr><td></td> <td>N = 20</td> <td></td> <td>\(\sum{fm}\) = 740</td> <td></td> <td></td> <td>\(\sum{fd^2}\) = 4120</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fm}}N\\ &= \frac {740}{20}\\ &= 37\\ \end{align*}</p> <p>\begin{align*} Standard\;Deviation\;(\sigma) &= \sqrt {\sum{fd^2}N}\\ &= \sqrt {\frac {4120}{20}}\\ &= \sqrt {206}\\ &= 14.35_{Ans}\\ \end{align*}</p>
Q15:
Compute the standard deviation from the following data:
Daily Sales |
0-10 |
10-20 |
20-30 |
30-40 |
40-50 |
Number of shops |
2 |
9 |
10 |
7 |
1 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="461"><tbody><tr><td>Daily Sales</td> <td>Mid-value (x)</td> <td>No. of shops (f)</td> <td>fx</td> <td>d = x - \(\overline{X}\)</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>0-10</td> <td>5</td> <td>2</td> <td>10</td> <td>-18.6</td> <td>345.96</td> <td>691.92</td> </tr><tr><td>10-20</td> <td>15</td> <td>9</td> <td>135</td> <td>-8.6</td> <td>73.96</td> <td>665.64</td> </tr><tr><td>20-30</td> <td>25</td> <td>10</td> <td>250</td> <td>1.4</td> <td>1.96</td> <td>19.6</td> </tr><tr><td>30-40</td> <td>35</td> <td>7</td> <td>245</td> <td>11.4</td> <td>129.96</td> <td>909.72</td> </tr><tr><td>40-50</td> <td>45</td> <td>1</td> <td>45</td> <td>21.4</td> <td>457.96</td> <td>457.96</td> </tr><tr><td></td> <td></td> <td>N = 29</td> <td>\(\sum {fx}\) = 685</td> <td></td> <td></td> <td>\(\sum {fd^2}\) = 2744.84</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum{fx}}N\\ &= \frac {685}{29}\\ &= 23.6\\ \end{align*}</p> <p>\begin{align*} \therefore\;Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fd^2}}N}\\ &= \sqrt {\frac {2744.84}{29}}\\ &= \sqrt {94.65}\\ &= 9.73_{Ans}\\ \end{align*}</p>
Q16:
Compute the standard deviation from the data below:
Marks Obtained |
0-10 |
10-20 |
20-30 |
30-40 |
40-50 |
No. of boys |
4 |
7 |
14 |
16 |
22 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="467"><tbody><tr><td>Marks Obtained</td> <td>No. of Students (f)</td> <td>Mid-value (m)</td> <td>fm</td> <td>fm<sup>2</sup></td> </tr><tr><td>0-10</td> <td>4</td> <td>5</td> <td>20</td> <td>100</td> </tr><tr><td>10-20</td> <td>7 - 4 = 3</td> <td>15</td> <td>45</td> <td>675</td> </tr><tr><td>20-30</td> <td>14 - 7 = 7</td> <td>25</td> <td>175</td> <td>4375</td> </tr><tr><td>30-40</td> <td>16 - 14 = 2</td> <td>35</td> <td>70</td> <td>2450</td> </tr><tr><td>40-50</td> <td>22 - 16 = 6</td> <td>45</td> <td>270</td> <td>12150</td> </tr><tr><td></td> <td>N = 22</td> <td></td> <td>\(\sum{fm}\) = 580</td> <td>\(\sum{fm^2}\) = 19750</td> </tr></tbody></table><p>\begin{align*} \therefore\;Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fm^2}}N - (\frac {\sum{fm}}N)^2}\\ &= \sqrt {\frac {19750}{22} - (\frac {580}{22})^2}\\ &= \sqrt {897.72 - 695.04}\\ &= \sqrt {202.69}\\ &= 14.24_{Ans}\\ \end{align*}</p>
Q17:
Calculate the standard deviation from the table given below:
Marks Obtained |
5 |
15 |
25 |
35 |
45 |
55 |
No. of Students |
5 |
8 |
10 |
15 |
8 |
4 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="458"><tbody><tr><td>Marks Obtained (x)</td> <td>No. of Students (f)</td> <td>fx</td> <td>d</td> <td>d<sup>2</sup></td> <td>fd<sup>2</sup></td> </tr><tr><td>5</td> <td>5</td> <td>25</td> <td>-25</td> <td>625</td> <td>3125</td> </tr><tr><td>15</td> <td>8</td> <td>120</td> <td>-15</td> <td>225</td> <td>1800</td> </tr><tr><td>25</td> <td>10</td> <td>250</td> <td>-5</td> <td>25</td> <td>250</td> </tr><tr><td>35</td> <td>15</td> <td>525</td> <td>5</td> <td>25</td> <td>375</td> </tr><tr><td>45</td> <td>8</td> <td>360</td> <td>15</td> <td>225</td> <td>1800</td> </tr><tr><td>55</td> <td>4</td> <td>220</td> <td>25</td> <td>625</td> <td>2500</td> </tr><tr><td></td> <td>N = 50</td> <td>\(\sum{fx}\) = 1500</td> <td></td> <td></td> <td>\(\sum {fd^2}\) = 9850</td> </tr></tbody></table><p>\begin{align*} Mean\;(\overline{X}) &= \frac {\sum {fx}}N\\ &= \frac {1500}{50}\\ &= 30\\ \end{align*}</p> <p>\begin{align*} \therefore\;Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fd^2}}N}\\ &= \sqrt {\frac {9850}{50}}\\ &= \sqrt {197}\\ &= 14.04_{Ans}\\ \end{align*}</p> <p></p>
Q18:
Compute the standard deviation from the following data:
Marks Obtained |
10-20 |
20-30 |
30-40 |
40-50 |
50-60 |
Numbers of Students |
4 |
6 |
10 |
3 |
2 |
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Calculating Standard Deviation</p> <table width="482"><tbody><tr><td>Marks Obtained</td> <td>Mid-value (m)</td> <td>d = m - 35</td> <td>f</td> <td>fd</td> <td>fd<sup>2</sup></td> </tr><tr><td>10-20</td> <td>15</td> <td>-20</td> <td>4</td> <td>-80</td> <td>1600</td> </tr><tr><td>20-30</td> <td>25</td> <td>-10</td> <td>6</td> <td>-60</td> <td>600</td> </tr><tr><td>30-40</td> <td>35</td> <td>0</td> <td>10</td> <td>0</td> <td>0</td> </tr><tr><td>40-50</td> <td>45</td> <td>10</td> <td>3</td> <td>30</td> <td>300</td> </tr><tr><td>50-60</td> <td>55</td> <td>20</td> <td>2</td> <td>40</td> <td>800</td> </tr><tr><td></td> <td></td> <td></td> <td>N = 25</td> <td>\(\sum{fd}\) = -70</td> <td>\(\sum{fd^2}\) = 3300</td> </tr></tbody></table><p>\begin{align*} \therefore\;Standard\;Deviation\;(\sigma) &= \sqrt {\frac {\sum{fd^2}}N - (\frac {\sum{fd}}N)^2}\\ &= \sqrt {\frac {3300}{25} - (\frac {-70}{25})^2}\\ &= \sqrt {132 - 7.84}\\ &= \sqrt {124.16}\\ &= 11.14_{Ans}\\ \end{align*}</p>