Subjective Questions
Q1:
Find the centre and radius of the circle whose equation is given by 2x2 + 2y2 - 5x - 7y - 23 = 0.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x<sup>2</sup> + 2y<sup>2</sup> - 5x - 7y - 23 = 0</p> <p>or, \(\frac {2x^2}2\) + \(\frac {2y^2}2\) - \(\frac 52\)x - \(\frac 72\)y - \(\frac {23}2\) = 0</p> <p>or, x<sup>2</sup> - \(\frac 52\)x + y<sup>2</sup> - \(\frac 72\)y - \(\frac {23}2\) = 0</p> <p>or, x<sup>2</sup> - 2.x.\(\frac 54\) + (\(\frac 54)\)<sup>2</sup> + y<sup>2</sup> - 2.y.\(\frac 74\) + (\(\frac 74\))<sup>2</sup> + (\(\frac 74\))<sup>2</sup>- (\(\frac 74\))<sup>2</sup> - \(\frac {23}2\) = 0</p> <p>or, (x - \(\frac 54\))<sup>2</sup> + (y - \(\frac 74\))<sup>2</sup> = \(\frac {25}{16}\) + \(\frac {49}{16}\) + \(\frac {23}2\) = \(\frac {25 + 49 + 184}{16}\)</p> <p>or, (x - \(\frac 54\))<sup>2</sup> + (y - \(\frac 74\))<sup>2</sup> = \(\frac {258}{16}\)............................(1)</p> <p>Eq<sup>n</sup> of circle is: (x - h)<sup>2</sup>+ (y - x)<sup>2</sup> = r<sup>2</sup>......................(2)</p> <p>Comparing (1) and (2)</p> <p>Centre of circle (h, k) = (\(\frac 54\), \(\frac 74\))</p> <p>and radius of circle (r) = \(\frac {\sqrt {258}}4\) units <sub>Ans</sub></p>
Q2:
Find the co-ordinates of the centre of the circle:
x2 + y2 - 20y + 75 = 0
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> + y<sup>2</sup> - 20y + 75 = 0</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 2.y.10 + (10)<sup>2</sup> - (10)<sup>2</sup> + 75 = 0</p> <p>or, (x - 0)<sup>2</sup> + (y - 10)<sup>2</sup>- 100 + 75 = 0</p> <p>or, (x - 0)<sup>2</sup> + (y - 10)<sup>2</sup>- 25 = 0</p> <p>or, (x - 0)<sup>2</sup> + (y - 10)<sup>2</sup>= 25</p> <p>or, (x - 0)<sup>2</sup> + (y - 10)<sup>2</sup>=(5)<sup>2</sup>............................(1)</p> <p>The eq<sup>n</sup> of circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>.....................(2)</p> <p>Comparing (1) and (2)</p> <p>Centre of circle (h, k) = (0. 10) <sub>Ans</sub></p>
Q3:
What will be the length of the radius of the circle whose equation is: x2 + y2 - 4x + 10y - 7 = 0?
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> + y<sup>2</sup> - 4x + 10y - 7 = 0</p> <p>or, x<sup>2</sup>- 4x + y<sup>2</sup> + 10y - 7 = 0</p> <p>or, x<sup>2</sup> - 2.x.2 + 2<sup>2</sup> - 2<sup>2</sup> + y<sup>2</sup> + 2.y.5 + 5<sup>2</sup> - 5<sup>2</sup> - 7 = 0</p> <p>or, (x - 2)<sup>2</sup> + (y + 5)<sup>2</sup> - 4 - 25 - 7 = 0</p> <p>or, (x - 2)<sup>2</sup> + (y + 5)<sup>2</sup> - 36 = 0</p> <p>or, (x - 2)<sup>2</sup> + (y + 5)<sup>2</sup>= 36</p> <p>or, (x - 2)<sup>2</sup> + (y + 5)<sup>2</sup>= 6<sup>2</sup>...........................(1)</p> <p>The eq<sup>n</sup> of the circle is: (x - h)<sup>2</sup>+ (y - k)<sup>2</sup> = r<sup>2</sup>.........................(2)</p> <p>Comparing (1) and (2)</p> <p>The length of radius of a circle is: 6 units <sub>Ans</sub></p> <p></p> <p></p>
Q4:
Calculate the length of the radius of the circle whose equation is: x2 + y2 + 4x - 6y + 4 = 0.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> + y<sup>2</sup> + 4x - 6y + 4 = 0</p> <p>or, x<sup>2</sup> + 4x+ 4 + y<sup>2</sup> - 6y = 0</p> <p>or, x<sup>2</sup> + 2.x.2 + 2<sup>2</sup>+ y<sup>2</sup> - 2.y.3 + 3<sup>2</sup> - 3<sup>2</sup>= 0</p> <p>or, (x + 2)<sup>2 </sup>+ (y - 3)<sup>2</sup> = 3<sup>2</sup>.....................................(1)</p> <p>The eq<sup>n</sup> of circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>...........................(2)</p> <p>Comparing (1) and (2)</p> <p>The length of radius of the circle (r) = 3 units<sub>Ans</sub></p>
Q5:
Find the equation of a circle having centre (3, 0) and radius 5 units.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Centre of circle (h, k) = (3, 0)</p> <p>Radius of circle (r) = 5 units</p> <p>The equation of circle is: (x - h)<sup>2 + </sup>(y - k)<sup>2</sup> = r<sup>2</sup></p> <p>(x - 3)<sup>2</sup> + (y - 0)<sup>2</sup> = 5<sup>2</sup></p> <p>or, x<sup>2</sup> - 6x + 9 + y<sup>2</sup> = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 6x + 9 - 25 = 0</p> <p>∴x<sup>2</sup> + y<sup>2</sup> - 6x -16 = 0<sub>Ans</sub></p>
Q6:
Find the centre and radius of x2 + y2 + 4x - 4y -1 = 0.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> + y<sup>2</sup> + 4x - 4y -1 = 0</p> <p>or, x<sup>2</sup> + 4x + y<sup>2</sup> - 4y - 1 = 0</p> <p>or, x<sup>2</sup> + 2.x.2 + 2<sup>2</sup> - 2<sup>2</sup> + y<sup>2</sup> - 2.y.2 + 2<sup>2</sup> - 2<sup>2</sup> - 1 = 0</p> <p>or, (x + 2)<sup>2</sup> + (y - 2)<sup>2</sup> - 9 = 0</p> <p>or, (x + 2)<sup>2</sup> + (y - 2)<sup>2</sup>= 9</p> <p>or, (x + 2)<sup>2</sup> + (y - 2)<sup>2</sup>=3<sup>2</sup>................................(1)</p> <p>Equation of circle, (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>...................................(2)</p> <p>Comparing (1) and (2)</p> <p>h = -2</p> <p>k = 2</p> <p>r = 3</p> <p>∴ Centre = (-2, 2) and radius = 3 units<sub>Ans</sub></p>
Q7:
If the equation of the circle is: x2 + y2 - 2y = 24, find its radius and its centre.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup>+ y<sup>2</sup> - 2y = 24</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 2.y.1 + 1<sup>2</sup>- 1<sup>2</sup> = 24</p> <p>or, x<sup>2</sup> + (y - 1)<sup>2</sup> - 1 = 24</p> <p>or, x<sup>2</sup> + (y - 1)<sup>2</sup> = 25</p> <p>or, x<sup>2</sup> + (y - 1)<sup>2</sup> = 5<sup>2</sup>.............................(1)</p> <p>The equation of circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = a<sup>2</sup>........................(2)</p> <p>Comparing (1) and (2)</p> <p>(h, k) = (0, 1)</p> <p>a = 5</p> <p>Hence, centre = (0, 1) and radius = 5 units<sub>Ans</sub></p>
Q8:
If the equation of a circle is (x + 5)2 + y2 = 121, find the co-ordinates of the centre of the circle and its diameter.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given eq<sup>n</sup> is:</p> <p>(x + 5)<sup>2</sup> + y<sup>2</sup> = 121</p> <p>or, (x + 5)<sup>2</sup> + (y - 0)<sup>2</sup> = (11)<sup>2</sup>..........................(1)</p> <p>The eq<sup>n</sup> of the circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>..............................(2)</p> <p>Comparing (1) and (2)</p> <p>h = -5</p> <p>k = 0</p> <p>r = 11</p> <p>∴ The centre of circle (h, k) = (-5, 0) and radius (r) = 11</p> <p>∴ Diameter = 2r = 2× 11 = 22 units<sub>Ans</sub></p>
Q9:
The equation of a circle is: x2 + y2 - 4x - 6y - 12 = 0. Find the co-ordinates of its centre.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> + y<sup>2</sup> - 4x - 6y - 12 = 0</p> <p>or, x<sup>2</sup> - 4x + y<sup>2</sup> - 6y - 12 = 0</p> <p>or, x<sup>2</sup> - 2.x.2 + 2<sup>2</sup> - 2<sup>2</sup> + y<sup>2</sup>- 2.y.3 + 3<sup>2</sup>- 3<sup>2</sup>- 12 = 0</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> - 12 - 4 - 9= 0</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> - 25 = 0</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> = 25</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> = 5<sup>2</sup>............................(1)</p> <p>The equation of circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>.............................(2)</p> <p>Comparing (1) and (2)</p> <p>(h, k) = (3, 2) and r = 5</p> <p>∴ The centre of circle = (3, 2) and radius of circle (r) = 5 units<sub>Ans</sub></p>
Q10:
Find the equation of a circle whose ends of diameter has co-ordinates (2, 4) and (3, -6).
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>(x<sub>1</sub> - y<sub>1</sub>) = (2, 4)</p> <p>(x<sub>2</sub> - y<sub>2</sub>) = (3, -6)</p> <p>The equation of a circle in diameter form:</p> <p>(x - x<sub>1</sub>) (x - x<sub>2</sub>) + (y - y<sub>1</sub>) (y - y<sub>2</sub>) = 0</p> <p>or, (x - 2) (x - 3) + (y - 4) (y + 6) = 0</p> <p>or, x<sup>2</sup> - 3x - 2x + 6 + y<sup>2</sup> + 6y - 4y - 24 = 0</p> <p>or, x<sup>2</sup> - 5x + 6 + y<sup>2</sup> + 2y - 24 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 5x + 2y - 18 = 0<sub>Ans</sub></p>
Q11:
Find the equation of the given circle.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p></p> <figure class="inline-right" style="width: 150px;"><img src="/uploads/j2.jpg" alt="z" width="150" height="150"><figcaption><br></figcaption></figure><p>Let: A(4, 2) and B(3, 5) are the two ends of the diameter of a circle.</p> <p>The equation of a circle in diameter form:</p> <p>(x - x<sub>1</sub>) (x - x<sub>2</sub>) + (y - y<sub>1</sub>) (y - y<sub>2</sub>) = 0</p> <p>or, (x, 4) (x, 3) + (y - 2) (y - 5) = 0</p> <p>or, x<sup>2</sup> - 3x - 4x + 12 + y<sup>2</sup> - 5y - 2y + 10 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 7x - 7y + 22 = 0<sub>Ans</sub></p>
Q12:
Find the equation of the circle of its radius is 5 units and equations of two diameters are: x = 3y and y = 2.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Radius of circle (r) = 5 units</p> <p>Eq<sup>n</sup> of two diameters are:</p> <p>x = 3y.............................(1)</p> <p>y = 2...............................(2)</p> <p>Putting the value of y in eq<sup>n</sup> (1)</p> <p>x = 3× 2 = 6</p> <p>Intersection point of the two diameters is centre of circle so:</p> <p>Centre of circle = (h, k) = (6, 2)</p> <p>Eq<sup>n</sup> of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 6)<sup>2</sup> + (y - 2)<sup>2</sup> = 5<sup>2</sup></p> <p>or, x<sup>2</sup>- 12x + 36 + y<sup>2</sup> - 4y + 4 - 25 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 12x - 4y + 15 = 0<sub>Ans</sub></p>
Q13:
Find the equation of the circle with centre (-2, 3) and touching on the x-axis.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Centre of circle (h, k) = (-2, 3)</p> <p>Radius (r) = k = 3</p> <p>The eq<sup>n</sup> of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x + 2)<sup>2</sup> + (y - 3)<sup>2</sup> = 3<sup>2</sup></p> <p>or, x<sup>2</sup> + 4x + 4 + y<sup>2</sup> - 6y + 9 = 9</p> <p>or, x<sup>2</sup> + y<sup>2</sup>+ 4x - 6y + 13 - 9 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup>+ 4x - 6y + 4 = 0<sub>Ans</sub></p>
Q14:
Find the equation of the circle with centre (4, -3) and touching on y-axis.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Centre of circle (h, k) = (4, -3)</p> <p>Radius (r) = h = 4</p> <p>The equation of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 4)<sup>2</sup> + (y + 3)<sup>2</sup> = 4<sup>2</sup></p> <p>or, x<sup>2</sup> - 8x + 16 + y<sup>2</sup> + 6y + 9 = 16</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 8x + 6y + 25 = 16</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 8x + 6y + 25 -16 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 8x + 6y + 9 = 0<sub>Ans</sub></p>
Q15:
Find equation of the circle which touches the positive x-axis and y-axis, whose radius is 5 units.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Radius of circle (r) = 5 units</p> <p>h = k = r = 5 [\(\because\) touches on both axis]</p> <p>The eq<sup>n</sup> of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 5)<sup>2</sup> + (y - 5)<sup>2</sup> = 5<sup>2</sup></p> <p>or, x<sup>2</sup> - 10x + 25 + y<sup>2</sup> - 10y + 25 = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 10x - 10y + 50 - 25 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 10x - 10y + 25 = 0<sub>Ans</sub></p>
Q16:
Find the equation of the circle with centre of (6, 8) and passing through the origin.
Type: Short
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Centre of circle = (h, k) = (6, 8)</p> <p>The eq<sup>n</sup> of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 6)<sup>2</sup> + (y - 8)<sup>2</sup> = r<sup>2</sup>..............................(1)</p> <p>The eq<sup>n</sup> (1) passes through the point (0, 0)</p> <p>(0 - 6)<sup>2</sup>+ (0 - 8)<sup>2</sup> = r<sup>2</sup></p> <p>or, 36 + 64 = r<sup>2</sup></p> <p>or, 100 = r<sup>2</sup></p> <p>or, (r)<sup>2</sup> = (10)<sup>2</sup></p> <p>∴ r = 10 units</p> <p>Putting the value of r in eq<sup>n</sup> (1)</p> <p>(x - 6)<sup>2</sup> + (y - 8)<sup>2</sup> = (10)<sup>2</sup></p> <p>or, x<sup>2</sup>- 12x + 36 + y<sup>2</sup> - 16y + 64 = 100</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 12x - 16y + 100 = 100</p> <p>∴x<sup>2</sup> + y<sup>2</sup> - 12x - 16y= 0<sub>Ans</sub></p>
Q17:
To find the equation of the circle, whose ends of the diameter are at the points A(x1, y1) and B(x2, y2).
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p></p> <figure class="inline-right" style="width: 200px;"><img src="/uploads/k2.jpg" alt="z" width="200" height="149"><figcaption><br></figcaption></figure><p>Here,</p> <p>AB is the diameter whose co-ordinates areA(x<sub>1</sub>, y<sub>1</sub>) and B(x<sub>2</sub>, y<sub>2</sub>).</p> <p>Let: P(x, y) be any point on the circle.</p> <p>Slope of PA = \(\frac {y - y_1}{x - x_1}\)</p> <p>Slope of PB = \(\frac {y - y_2}{x - x_2}\)</p> <p>\(\angle\)APB = 90° [\(\because\) The angle made in a semi-circle is a right angle.]</p> <p>Now,</p> <p>slope of PA× slope of PB = -1</p> <p>or,\(\frac {y - y_1}{x - x_1}\)× \(\frac {y - y_2}{x - x_2}\) = -1</p> <p>or, (y - y<sub>1</sub>) (y - y<sub>2</sub>) = - (x - x<sub>1</sub>) (x - x<sub>2</sub>)</p> <p>∴(x - x<sub>1</sub>) (x - x<sub>2</sub>) + (y - y<sub>1</sub>) (y - y<sub>2</sub>) = 0<sub>Ans</sub></p>
Q18:
Find the centre and radius of the circle passing through the points P(2, -2), Q(6, 6) and R(5, 7). Also find the equation of the circle.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given points of the circle are:P(2, -2), Q(6, 6) and R(5, 7)</p> <p>Let, centre of circle is: (h, k) and radius of circle is: a.</p> <p>Equation of circle is (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = a<sup>2</sup>...........................(1)</p> <p>Given points P,Q and R passes through the equation (1)</p> <p>(2 - h)<sup>2</sup> + (-2, - k)<sup>2</sup>= a<sup>2</sup>.........................(2)</p> <p>(6 - h)<sup>2</sup> + (6 - k)<sup>2</sup> = a<sup>2</sup>...........................(3)</p> <p>(5 - h)<sup>2</sup> + (7 - k)<sup>2</sup> = a<sup>2</sup>...........................(4)</p> <p>From equation (2) and (3)</p> <p>(2 - h)<sup>2</sup> + (-2, - k)<sup>2</sup>=(6 - h)<sup>2</sup> + (6 - k)<sup>2</sup></p> <p>or, 4 - 4h + h<sup>2</sup> + 4 + 4k + k<sup>2</sup> = 36 - 12h + h<sup>2</sup> + 36 - 12k + k<sup>2</sup></p> <p>or, 8h + 16k + 8 = 72</p> <p>or, 8h + 16k = 72 - 8</p> <p>or, 8(h + 2k) = 64</p> <p>or, h + 2k = 8.......................................(5)</p> <p>Similarly,</p> <p>From equation (2) and (4)</p> <p>(2 - h)<sup>2</sup> + (-2, - k)<sup>2</sup>=(5 - h)<sup>2</sup> + (7 - k)<sup>2</sup></p> <p>or,4 - 4h + h<sup>2</sup> + 4 + 4k + k<sup>2</sup>= 25 - 10h + h<sup>2</sup> + 49 - 14k + k<sup>2</sup></p> <p>or, -4h + 4k + 8 = 74 - 10h - 14k</p> <p>or, -4h + 10h + 4k + 14k = 74 - 8</p> <p>or, 6h + 18k = 66</p> <p>or, 6(h + 3k) = 66</p> <p>or, h + 3k = 11......................................(6)</p> <p>Subtracting equation (6) from equation (5)</p> <table width="134"><tbody><tr><td>h</td> <td>+</td> <td>2k</td> <td>=</td> <td>8</td> </tr><tr><td>h</td> <td>+</td> <td>3k</td> <td>=</td> <td>11</td> </tr><tr><td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> </tr><tr><td></td> <td>-</td> <td>k</td> <td>=</td> <td>-3</td> </tr></tbody></table><p>∴ k = 3</p> <p>Substituting the value of k in equation (6)</p> <p>h + 3k = 11</p> <p>or, h + 3× 3 = 11</p> <p>or, h + 9 = 11</p> <p>or, h = 11 - 9</p> <p>∴ h = 2</p> <p>∴ Centre of circle (h, k) = (2, 3)</p> <p>Again,</p> <p>Substituting the value of h, k in equation (2)</p> <p>(2 - 2)<sup>2</sup> + (-2 - 3)<sup>2</sup> = a<sup>2</sup></p> <p>or, 0 + (-5)<sup>2</sup> = a<sup>2</sup></p> <p>or, a<sup>2</sup> = 25</p> <p>∴ a = 5</p> <p>Substituting the value of (h, k) and 'a' in equation (1)</p> <p>(x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> = 5<sup>2</sup></p> <p>or, x<sup>2</sup> - 4x + 4 + y<sup>2</sup> - 6y + 9 = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 4x - 6y + 13 - 25 = 0</p> <p>∴x<sup>2</sup> + y<sup>2</sup> - 4x - 6y -12 = 0<sub>Ans</sub></p>
Q19:
Find the equation of the circle which passes through the points (4, 1) and (6, 5) and whose centre lies on the line 4x + y = 16.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Centre of circle (h, k) and radius of circle = a.</p> <p>Equation of the circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = a<sup>2</sup>........................(1)</p> <p>The points (4, 1) and (6, 5) passes through the equation (1)</p> <p>(4 - h)<sup>2</sup> + (1 - k)<sup>2</sup> = a<sup>2</sup>.....................(2)</p> <p>(6 - h)<sup>2</sup> + (5 - k)<sup>2</sup> = a<sup>2</sup>.....................(3)</p> <p>From equation (2) and (3)</p> <p>(6 - h)<sup>2</sup> + (5 - k)<sup>2</sup>=(4 - h)<sup>2</sup> + (1 - k)<sup>2</sup></p> <p>or, 36 - 12h + h<sup>2</sup> + 25 - 10k + k<sup>2</sup> = 16 - 8h + h<sup>2</sup> + 1 - 2k + k<sup>2</sup></p> <p>or, 4h + 8k = 44</p> <p>or, 4(h + 2k) = 44</p> <p>or, h + 2k = 11..........................(4)</p> <p>Now,</p> <p>Centre (h, k) lies on the line 4x + y = 16</p> <p>4h + k = 16</p> <p>k = 16 - 4h...........................(5)</p> <p>Substituting the value of k in equation (4)</p> <p>h + 2(16 - 4h) = 11</p> <p>or, h + 32 - 8h = 11</p> <p>or, -7h = 11 - 32</p> <p>or, -7h = -21</p> <p>or, h = \(\frac {-21}{-7}\)</p> <p>∴ h = 3</p> <p>Substituting the value of h in equation (5)</p> <p>∴ k = 16 - 4× 3 = 16 - 12 = 4</p> <p>Substituting (h, k) in equation (2)</p> <p>(4 - 3)<sup>2</sup> + (1 - 4)<sup>2</sup> = a<sup>2</sup></p> <p>or, a<sup>2</sup>= 1<sup>2</sup>+ (-3)<sup>2</sup></p> <p>or, a<sup>2</sup> = 1 + 9</p> <p>or, a<sup>2</sup> = 10</p> <p>∴ a = \(\sqrt {10}\)</p> <p>The equation of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = a<sup>2</sup></p> <p>or, (x - 3)<sup>2</sup> + (y - 4)<sup>2</sup> = (\(\sqrt {10}\))<sup>2</sup></p> <p>or, x<sup>2</sup> - 2.x.3 + 3<sup>2</sup> + y<sup>2</sup> - 2.y.4 + 4<sup>2</sup> = 10</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 6x - 8y + 9 + 16 = 10</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 6x + 8y + 25 - 10 = 0</p> <p>∴x<sup>2</sup> + y<sup>2</sup> - 6x + 8y + 15 = 0<sub>Ans</sub></p>
Q20:
If one end of a diameter of a circle x2 + y2 - 4x - 6y + 11 = 0 is (3, 4), find the co-ordinates of the other end.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x<sup>2</sup> + y<sup>2</sup> - 4x - 6y + 11 = 0</p> <p>or, x<sup>2</sup> - 4x + y<sup>2</sup> - 6y + 11 = 0</p> <p>or, x<sup>2</sup> - 2.x.2 + 2<sup>2</sup> - 2<sup>2</sup> + y<sup>2</sup> - 2.y.3 + 3<sup>2</sup> - 3<sup>2</sup> + 11 = 0</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> - 4 - 9 + 11 = 0</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> - 2= 0</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup>=2....................................(1)</p> <p>The equation of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>..............................(2)</p> <p>Comparing (1) and (2)</p> <p>(h, k) = (2, 3)</p> <p>∴ Centre of circle is a mid-point of the diameter of the circle is (2, 3)</p> <p>Mid-point of circle = (\(\frac {x_1 + x_2}2\), \(\frac {y_1 + y_2}2\))</p> <p>or, (2, 3) = (\(\frac {3 + x}2\), \(\frac {4 + y}2\))</p> <table width="315"><tbody><tr><td> <p>2 = \(\frac {3 + x}2\)</p> <p>or, 3 + x = 4</p> <p>or, x = 4 - 3</p> <p>∴ x = 1</p> </td> <td> <p>3 = \(\frac {4 + y}2\)</p> <p>or, 4 + y = 6</p> <p>or, y = 6 - 4</p> <p>∴ y = 2</p> </td> </tr></tbody></table><p>∴ The other point is: (1, 2)<sub>Ans</sub></p>
Q21:
Find the co-ordinates of center and length of diameter of the circle:
2x2 + 2y2 - 6x - 2y - 13 = 0
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x<sup>2</sup> + 2y<sup>2</sup> - 6x - 2y - 13 = 0</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 3x - y - \(\frac {13}2\) = 0 [\(\because\) Dividing by 2 on both sides]</p> <p>or, x<sup>2</sup> - 3x + y<sup>2</sup> - y - \(\frac {13}2\)</p> <p>or, x<sup>2</sup> - 2.x.\(\frac 32\) + (\(\frac 32\)<sup>2</sup> - (\(\frac 32\)<sup>2</sup>+ y<sup>2</sup>- 2.y.\(\frac 12\) + (\(\frac 12\))<sup>2</sup> - (\(\frac 12\))<sup>2</sup> - \(\frac {13}2\) = 0</p> <p>or, (x - \(\frac 32\))<sup>2</sup> + (y - \(\frac 12\))<sup>2</sup> = \(\frac 94\) + \(\frac 14\) + \(\frac {13}2\)</p> <p>or, (x - \(\frac 32\))<sup>2</sup> + (y - \(\frac 12\))<sup>2</sup> = \(\frac {9 + 1 + 26}4\)</p> <p>or, (x - \(\frac 32\))<sup>2</sup> + (y - \(\frac 12\))<sup>2</sup> = \(\frac {36}4\)</p> <p>or, (x - \(\frac 32\))<sup>2</sup> + (y - \(\frac 12\))<sup>2</sup> = (\(\frac 62\))<sup>2</sup>...............................(1)</p> <p>The equation of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>....................................(2)</p> <p>Comparing equation (1) and (2)</p> <p>(h, k) = (\(\frac 32\), \(\frac 12\))</p> <p>radius (a) = \(\frac 62\) units</p> <p>Length of the diameter = 2r = 2× \(\frac 62\) = 6 units</p> <p>∴ Centre =(\(\frac 32\), \(\frac 12\)) and diameter = 6 units<sub>Ans</sub></p>
Q22:
The equation of a circle is: x2 + y2 - 2x - 6y + 1 = 0, find the co-ordinates of its centre and radius.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equation is:</p> <p>x<sup>2</sup> + y<sup>2</sup> - 2x - 6y + 1 = 0</p> <p>or, x<sup>2</sup> - 2x + 1 + y<sup>2</sup> - 6y = 0</p> <p>or, x<sup>2</sup> - 2.x.1 + 1<sup>2</sup> + y<sup>2</sup> - 2.y.3 + 3<sup>2</sup> - 3<sup>2</sup> = 0</p> <p>or, (x - 1)<sup>2</sup> + (y - 3)<sup>2</sup> - 9 = 0</p> <p>or, (x - 1)<sup>2</sup> + (y - 3)<sup>2</sup>=3<sup>2</sup>............................(1)</p> <p>The equation of circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>....................................(2)</p> <p>Comparing equation (1) and (2)</p> <p>∴ Centre of circle (h, k) = (1, 3)</p> <p>and radius (r) = 3 units<sub>Ans</sub></p>
Q23:
The co-ordinates of an end point of the diameter of circle x2 + y2 - 2x - 2y = 8 is (2, 4), find the co-ordinates of other end.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equation is:</p> <p>x<sup>2</sup> + y<sup>2</sup> - 2x - 2y = 8</p> <p>or, x<sup>2</sup>- 2.x.1 + 1<sup>2</sup> - 1<sup>2</sup> + y<sup>2</sup>- 2.y.1 + 1<sup>2</sup> - 1<sup>2</sup> = 8</p> <p>or, (x - 2)<sup>2</sup> + (y - 2)<sup>2</sup> - 1 - 1 = 8</p> <p>or, (x - 2)<sup>2</sup> + (y - 2)<sup>2</sup>= 8 + 1 + 1</p> <p>or, (x - 2)<sup>2</sup> + (y - 2)<sup>2</sup>= \(\sqrt {10}\)..........................(1)</p> <p>The eq<sup>n</sup>of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup>= r<sup>2</sup>.................................(2)</p> <p>Comparing equation (1) and (2)</p> <p>h = 1</p> <p>k = 1</p> <p>r = \(\sqrt {10}\) units</p> <p>(h, k) = (1, 1)</p> <p>From the above figure,</p> <p>mid-point of AB = (\(\frac {x_1 + x_2}2\), \(\frac {y_1 + y_2}2\))</p> <p>or, (1, 1) = (\(\frac {x_1 + 2}2\), \(\frac {y_1 + 4}2\))</p> <table width="364"><tbody><tr><td> <p>1 = \(\frac {x + 2}2\)</p> <p>or, x + 2 = 2</p> <p>or, x = 2 - 2</p> <p>∴ x = 0</p> </td> <td> <p>1 = \(\frac {y + 4}2\)</p> <p>or, y + 4 = 2</p> <p>or, y = 2 - 4</p> <p>∴ y = -2</p> </td> </tr></tbody></table><p>∴ The other end of the diameter is: (0, -2)<sub>Ans</sub></p>
Q24:
Find the co-ordinates of the centre and the radius of the circle given by the equation:
2x2 + 2y2 - 8x - 12y + 1 = 0
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>Given equation is:</p> <p>2x<sup>2</sup> + 2y<sup>2</sup> - 8x - 12y + 1 = 0</p> <p>or, \(\frac {2x^2}2\) + \(\frac {2y^2}2\) - \(\frac {8x}2\) - \(\frac {12y}2\) + \(\frac 12\) = 0 [\(\because\) dividing by 2 on both sides]</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 4x - 6y + \(\frac 12\) = 0</p> <p>or, x<sup>2</sup>- 4x + y<sup>2</sup>- 6y + \(\frac 12\) = 0</p> <p>or, x<sup>2</sup> - 2.x.2 + 2<sup>2</sup> - 2<sup>2</sup>+ y<sup>2</sup> - 2.y.3 + 3<sup>2</sup> - 3<sup>2</sup> + \(\frac 12\) = 0</p> <p>or, (x - 2)<sup>2</sup>+ (y - 3)<sup>2</sup>- 4 - 9 + \(\frac 12\) = 0</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> = 13 - \(\frac 12\)</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> =\(\frac {26 - 1}2\)</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> =\(\frac {25}2\)</p> <p>or, (x - 2)<sup>2</sup> + (y - 3)<sup>2</sup> =(\(\frac 5{\sqrt 2})\)<sup>2</sup>........................(1)</p> <p>The eq<sup>n</sup> of circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup>= r<sup>2</sup>...........................(2)</p> <p>Comparing equation (1) and (2)</p> <p>∴Centre of circle = (h, k) = (2, 3)</p> <p>and Radius of circle (r) =(\(\frac 5{\sqrt 2})\)<sub>Ans</sub></p>
Q25:
Find the equation of a circle which passes through the point (-2, 0) and (0. -2) and its centre lies on the straight lines 2x - 3y + 1 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p></p> <figure class="inline-right" style="width: 200px;"><img src="/uploads/l.jpg" alt="c" width="200" height="230"><figcaption><br></figcaption></figure><p>Let: centre of circle be (h. k).</p> <p>Distance of OA = Distance of OB</p> <p>or, \(\sqrt {(h - 0)^2 + (k + 2)^2}\) = \(\sqrt {(h + 2)^2 + (k - 0)^2}\)</p> <p>Squaring on both sides,</p> <p>h<sup>2</sup> + k<sup>2</sup> + 4k + 4 = h<sup>2</sup> + 4h + 4 + k<sup>2</sup></p> <p>or, 4k = 4h</p> <p>or, k - h = 0.........................(1)</p> <p>The centre (h, k) lies on the line:</p> <p>2x - 3y + 1 = 0</p> <p>2h - 3k + 1 = 0....................(2)</p> <p>Multiply eq<sup>n</sup> (1) by 2 and adding with eq<sup>n</sup> (2)</p> <table width="121"><tbody><tr><td>-2h</td> <td>+</td> <td>2k</td> <td>=</td> <td>0</td> </tr><tr><td>2h</td> <td>-</td> <td>3k</td> <td>=</td> <td>-1</td> </tr><tr><td></td> <td>-</td> <td>k</td> <td>=</td> <td>-1</td> </tr></tbody></table><p>∴ k = 1</p> <p>Putting the value of k in eq<sup>n</sup> (1)</p> <p>k - h = 0</p> <p>or, 1 - h = 0</p> <p>or, -h = -1</p> <p>∴ h = 1</p> <p>∴ Centre (h, k) = (1, 1)</p> <p>\begin{align*} Radius (r) &= \sqrt {(x - h)^2 + (y - k)^2}\\ &= \sqrt {(0 - 1)^2 + (-2 - 1)^2}\\ &= \sqrt {1 + 9}\\ &=\sqrt {10} units\\ \end{align*}</p> <p>Equation of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 1)<sup>2</sup> + (y - 1)<sup>2</sup> = (\(\sqrt {10}\))<sup>2</sup></p> <p>or, x<sup>2</sup> - 2.x1 + 1<sup>2</sup> + y<sup>2</sup> - 2.y.1 + 1<sup>2</sup> = 10</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 2x - 2y + 1 + 1 - 10= 0</p> <p>∴x<sup>2</sup> + y<sup>2</sup> - 2x - 2y - 8 = 0<sub>Ans</sub></p> <p></p>
Q26:
The centre of the circle lies on the line 2x + y - 1 = 0. If it is passing through the point (4, 3) and its radius is 5 units. Find the equation of the circle.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p></p> <figure class="inline-right" style="width: 200px;"><img src="/uploads/m2.jpg" alt="f" width="200" height="230"><figcaption><br></figcaption></figure><p>Let: the centre of circle = (h, k)</p> <p>The centre of a circle having radius 5 units (h, k) lies on the line 2x + y - 1 = 0.</p> <p>2h + k - 1 = 0</p> <p>or, k = 1 - 2h.......................(1)</p> <p>Eq<sup>n</sup> of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = 5<sup>2</sup>..................(2)</p> <p>The point (4, 3) passes through the eq<sup>n</sup> (2)</p> <p>(4 - h)<sup>2</sup> + (3 - k)<sup>2</sup> = 25</p> <p>or, 16 - 8h + h<sup>2</sup> + 9 - 6k + k<sup>2</sup> = 25</p> <p>or, h<sup>2</sup> - 8h - 6k + k<sup>2</sup> + 25 - 25 = 0</p> <p>or,h<sup>2</sup> - 8h - 6k + k<sup>2</sup>= 0.............................(3)</p> <p>Putting the value of k in eq<sup>n</sup> (3)</p> <p>h<sup>2</sup> - 8h - 6(1 - 2h) + (1 - 2h)<sup>2</sup> = 0</p> <p>or, h<sup>2</sup> - 8h - 6 + 12h + 1 - 4h + 4h<sup>2</sup> = 0</p> <p>or, 5h<sup>2</sup> = 5</p> <p>or, h<sup>2</sup> = \(\frac 55\)</p> <p>or, h<sup>2</sup> = 1</p> <p>∴ h = ± 1</p> <p>Putting the value of k = 1 in eq<sup>n</sup> (1)</p> <p>k = 1 - 2h = 1 - 2× 1 = -1</p> <p>∴ (h, k) = (1, -1)</p> <p>Putting the value of (h, k) in eq<sup>n</sup> (2)</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = 25</p> <p>or, (x - 1)<sup>2</sup> + (y - 1)<sup>2</sup> = 25</p> <p>or, x<sup>2</sup> - 2.x.1 + 1<sup>2</sup> + y<sup>2</sup> - 2.y.1 + 1<sup>2</sup> = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 2x - 2y + 1 + 1 = 25</p> <p>or,x<sup>2</sup> + y<sup>2</sup> - 2x - 2y = 25 - 2</p> <p>∴x<sup>2</sup> + y<sup>2</sup> - 2x - 2y = 23</p> <p>Putting the value of h = -1 in eq<sup>n</sup> (1)</p> <p>k = 1 - 2h = 1 - 2 × (-1) = 1 + 2 = 3</p> <p>∴ (h, k) = (-1, 3)</p> <p>Putting the value of (h, k) in eq<sup>n</sup> (2)</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = 25</p> <p>or, (x + 1)<sup>2</sup> + (y - 3)<sup>2</sup> = 25</p> <p>or, x<sup>2</sup> + 2x + 1 + y<sup>2</sup> - 6y + 9 = 25</p> <p>or, x<sup>2</sup>+ y<sup>2</sup> + 2x - 6y + 10 = 25</p> <p>or, x<sup>2</sup>+ y<sup>2</sup> + 2x - 6y = 25 - 10</p> <p>∴x<sup>2</sup>+ y<sup>2</sup> + 2x - 6y =15</p> <p>∴ Required equations are:x<sup>2</sup> + y<sup>2</sup> - 2x - 2y = 23 andx<sup>2</sup>+ y<sup>2</sup> + 2x - 6y =15<sub>Ans</sub></p>
Q27:
Find the co-ordinates of the center and the radius of a circle whose equation is:
2x - 6y - x2 - y2 = 1
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equation is:</p> <p>2x - 6y - x<sup>2</sup> - y<sup>2</sup> = 1</p> <p>or, -x<sup>2</sup> + 2x - y<sup>2</sup> - 6y - 1 = 0</p> <p>or, -(x<sup>2</sup> - 2x + y<sup>2</sup> + 6y + 1) = 0</p> <p>or,x<sup>2</sup> - 2x + 1 + y<sup>2</sup> + 6y = 0</p> <p>or, x<sup>2</sup> - 2.x.1 + 1<sup>2</sup> + y<sup>2</sup> + 2.y.3 + 3<sup>2</sup> - 3<sup>2</sup> = 0</p> <p>∴(x - 1)<sup>2</sup> + (y + 3)<sup>2</sup>= 3<sup>2</sup>............................(1)</p> <p>Equation of circle when the centre of circle is (h, k) and radius (r) is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>.................................(2)</p> <p>Comparing (1) and (2)</p> <p>∴ Center of circle (h, k) = (1, -3)</p> <p>and Radius of circle (r) = 3 units<sub>Ans</sub></p>
Q28:
The equation of a circle is: 2x2 + 2y2 - 2x + 6y = 45. Find the co-ordinates of its centre and its radius.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>2x<sup>2</sup> + 2y<sup>2</sup> - 2x + 6y = 45</p> <p>or, \(\frac {2x^2}2\) + \(\frac {2y^2}2\) - \(\frac {2x}2\) + \(\frac {6y}2\) = \(\frac {45}2\) [\(\because\) Dividing by 2 on both sides.]</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - x + 3y = \(\frac {45}2\)</p> <p>or, x<sup>2</sup>- x + y<sup>2</sup> + 3y = \(\frac {45}2\)</p> <p>or, x<sup>2</sup> - 2.x.\(\frac 12\) + (\(\frac 12)^2\) - (\(\frac 12)^2\) + y<sup>2</sup> + 2.y.\(\frac 32\) + (\(\frac 32)^2\) - (\(\frac 32)^2\) = \(\frac {45}2\)</p> <p>or, (x - \(\frac 12\))<sup>2</sup> + (y + \(\frac 32\))<sup>2</sup> -(\(\frac 14)\) -(\(\frac 94)\) = \(\frac {45}2\)</p> <p>or, (x - \(\frac 12\))<sup>2</sup> + (y + \(\frac 32\))<sup>2</sup>= \(\frac {45}2\) + \(\frac 14\) + \(\frac 94\)</p> <p>or, (x - \(\frac 12\))<sup>2</sup> + (y + \(\frac 32\))<sup>2</sup>= \(\frac {90 + 1 + 9}4\)</p> <p>or, (x - \(\frac 12\))<sup>2</sup> + (y + \(\frac 32\))<sup>2</sup> = \(\frac {100}4\)</p> <p>or, (x - \(\frac 12\))<sup>2</sup> + (y + \(\frac 32\))<sup>2</sup>= (\(\frac {10}4)^2\)..........................(1)</p> <p>The equation of circle is: (x - h)<sup>2</sup>+ (y - k)<sup>2</sup> = r<sup>2</sup>...........................(2)</p> <p>Comparing equation (1) and (2)</p> <p>h = \(\frac 12\)</p> <p>k = \(\frac {-3}2\)</p> <p>r = \(\frac {10}2\) = 5</p> <p>∴ Center of the circle (h, k) = (\(\frac 12\), \(\frac {-3}2\))</p> <p>and Radius (r) = 5 units<sub>Ans</sub></p>
Q29:
Find the equation of the circle passes through the point (2, -1), (6, 1) and (6, 3).
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p></p> <figure class="inline-right" style="width: 150px;"><img src="/uploads/n1.jpg" alt="f" width="150" height="150"><figcaption><br></figcaption></figure><p>Let: C(h, k) be the centre of the circle which passes through P(2, -1), Q(6, 1) and R(6, 3).</p> <p>CP<sup>2</sup> = r<sup>2</sup> = (h - 2)<sup>2</sup> + (k + 1)<sup>2</sup></p> <p>CQ<sup>2</sup> = r<sup>2</sup> = (h - 6)<sup>2</sup> + (k - 1)<sup>2</sup></p> <p>CR<sup>2</sup> = r<sup>2</sup> = (h - 6)<sup>2</sup> + (k - 3)<sup>2</sup></p> <p>Now,</p> <p>CP<sup>2</sup>= CQ<sup>2</sup></p> <p>or,(h - 2)<sup>2</sup> + (k + 1)<sup>2 =</sup>(h - 6)<sup>2</sup> + (k - 1)<sup>2</sup></p> <p>or, h<sup>2</sup>- 4h + 4 + k<sup>2</sup> + 2k + 1 = h<sup>2</sup> - 12h + 36 + k<sup>2</sup> - 2k + 1</p> <p>or, 8h + 4k - 32 = 0</p> <p>or, 4(2h + k - 8) = 0</p> <p>or, 2h + k - 8 = 0...........................(1)</p> <p>Also,</p> <p>CP<sup>2</sup> = CR<sup>2</sup></p> <p>or, (h - 2)<sup>2</sup> + (k + 1)<sup>2</sup> = (h - 6)<sup>2</sup> + (k - 3)<sup>2</sup></p> <p>or, h<sup>2</sup> - 4h + 4 + k<sup>2</sup> + 2k + 1 = h<sup>2</sup> - 12h + 36 + k<sup>2</sup> - 6k + 9</p> <p>or, 8h + 8k - 40 = 0</p> <p>or, 8(h + k - 5) = 0</p> <p>or, h + k - 5 = 0..........................(2)</p> <p>Subtracting eq<sup>n</sup> (1) from (2): we get;</p> <table width="167"><tbody><tr><td>h</td> <td>+</td> <td>k</td> <td>-</td> <td>5</td> <td>=</td> <td>0</td> </tr><tr><td>2h</td> <td>+</td> <td>k</td> <td>-</td> <td>8</td> <td>=</td> <td>0</td> </tr><tr><td>-</td> <td>-</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> </tr><tr><td>-h</td> <td></td> <td></td> <td>+</td> <td>3</td> <td>=</td> <td>0</td> </tr></tbody></table><p>or, -h = -3</p> <p>∴ h = 3</p> <p>Putting the value of h in eq<sup>n</sup> (2)</p> <p>h + k - 5 = 0</p> <p>or, 3 + k - 5 = 0</p> <p>or, k - 2 = 0</p> <p>∴ k = 2</p> <p>∴ Centre = (h, k) = (3, 2)</p> <p>and Radius (r) = \(\sqrt {(2 - 3)^2 + (-1 - 2)^2}\) = \(\sqrt {(-1)^2 + (-3)^2}\) = \(\sqrt {10}\)</p> <p>Putting the value of (h, k) and r in eq<sup>n</sup>:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 3)<sup>2</sup> + (y - 2)<sup>2</sup> = (\(\sqrt {10}\))<sup>2</sup></p> <p>or, x<sup>2</sup> - 6x + 9 + y<sup>2</sup> - 4y + 4 = 10</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 6x - 4y + 13 = 10</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 6x - 4y + 13 -10 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 6x - 4y +3 = 0<sub>Ans</sub></p>
Q30:
The line x + y = 2 cuts a circle x2 + y2 = 4 at two points. Find the co-ordinates of the points.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given eq<sup>n</sup> is:</p> <p>x + y = 2</p> <p>or, y = 2 - x......................(1)</p> <p>x<sup>2</sup> + y<sup>2</sup> = 4........................(2)</p> <p>Putting the value of y in equation (2)</p> <p>x<sup>2</sup> + (2 - x)<sup>2</sup> = 4</p> <p>or, x<sup>2</sup> + 4 - 4x + x<sup>2</sup> = 4</p> <p>or, 2x<sup>2</sup> - 4x + 4 - 4 = 0</p> <p>or, 2x<sup>2</sup> - 4x = 0</p> <p>or, 2x (x - 2) = 0</p> <p>Either: 2x = 0 i.e. x = 0</p> <p>Or: x - 2 = 0 i.e. x = 2</p> <p>Putting the value of x in eq<sup>n</sup> (1)</p> <p>If: x = 0</p> <p>y = 2 - 0 =2</p> <p>If: x = 2</p> <p>y = 2 - 2 = 0</p> <p>∴ The required points are: (0, 2) and (2, 0)<sub>Ans</sub></p>
Q31:
The equation of two diameters of a circle passing through the point (3, 4) and x + y = 14 and 2x - y = 4. Find the equation of the circle.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equation of diameters of the circle are:</p> <p>x + y = 14..........................(1)</p> <p>2x - y = 4...........................(2)</p> <p>Adding equation (1) and (2)</p> <table width="121"><tbody><tr><td>x</td> <td>+</td> <td>y</td> <td>=</td> <td>14</td> </tr><tr><td>2x</td> <td>-</td> <td>y</td> <td>=</td> <td>4</td> </tr><tr><td>3x</td> <td></td> <td></td> <td>=</td> <td>18</td> </tr></tbody></table><p>or, x = \(\frac {18}3\)</p> <p>∴ x = 6</p> <p>Putting the value of x in equation (1)</p> <p>x + y = 14</p> <p>or, 6 + y = 14</p> <p>or, y = 14 - 6</p> <p>∴ y = 8</p> <p>Intersection point of the two diameter equation of the circle is a center of a circle (h, k) = (6, 8)</p> <p>The given circle passes through the point (3, 4)</p> <p>\begin{align*} Radius\; of\; circle &= \sqrt {(x_2 - x_1)^2 + (y_2 - y_1)^2}\\ &=\sqrt {(6 - 3)^2 + (8 - 4)^2}\\ &= \sqrt {3^2 + 4^2}\\ &= \sqrt {9 + 16}\\ &= \sqrt {25}\\ &= 5\; units\\ \end{align*}</p> <p>Equation of the circle whose center is (h, k). Then:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 6)<sup>2</sup> + (y - 8)<sup>2</sup> = 5<sup>2</sup></p> <p>or, x<sup>2</sup> - 12x + 36 + y<sup>2</sup>- 16y + 64 = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 12x - 16y + 100 - 25 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 12x - 16y + 75 = 0<sub>Ans</sub></p>
Q32:
A circle has radius 5 units and the equations of its two diameters are 2x - y = 5 and x - 3y + 5 = 0. Find the equation of the circle and show that it passes through the origin.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given equations of two diameters are:</p> <p>2x - y = 5</p> <p>or, y = 2x - 5................(1)</p> <p>x - 3y + 5 = 0...............(2)</p> <p>Putting the value of y in eq<sup>n</sup> (2)</p> <p>x - 3 (2x - 5) + 5 = 0</p> <p>or, x - 6x + 15 + 5 = 0</p> <p>or, -5x = - 20</p> <p>or, x = \(\frac {-20}{-5}\)</p> <p>∴ x = 4</p> <p>Putting the value of x in eq<sup>n</sup> (1)</p> <p>y = 2x - 5</p> <p>or, y = 2× 4 - 5</p> <p>or, y = 8 - 5</p> <p>∴ y = 3</p> <p>The center of the circle (h, k) = (4, 3)</p> <p>Radius of the circle (r) = 5 units</p> <p>Equation of the circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 4)<sup>2</sup> + (y - 3)<sup>2</sup> = 5<sup>2</sup></p> <p>or, x<sup>2</sup> - 8x + 16 + y<sup>2</sup> - 6y + 9 = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 8x - 6y + 25 = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 8x - 6y + 25 -25 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 8x - 6y= 0.............................(3)</p> <p>The point (0, 0) passes through the eq<sup>n</sup> (3)</p> <p>0<sup>2</sup> + 0<sup>2</sup> - 4× 0 - 6× 0 = 0</p> <p>0 = 0</p> <p>∴ The equation x<sup>2</sup> + y<sup>2</sup> - 4x - 6y = 0 passes through origin.<sub>Proved</sub></p> <p></p>
Q33:
If the line joining the points (1, 2) and (3, 6) is the diameter of a circle, find the equation of the circle.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Given points are: (1, 2) and (3, 6)</p> <p>Equation of the diameter of a circle is:</p> <p>(x - x<sub>1</sub>) (x - x<sub>2</sub>) + (y - y<sub>1</sub>) (y - y<sub>2</sub>) = 0</p> <p>or, (x - 1) (x - 3) + (y - 2) (y - 6) = 0</p> <p>or, x<sup>2</sup>- x - 3x + 3 + y<sup>2</sup> - 2y - 6y + 12 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 4x - 8y + 15 = 0</p> <p>Hence, the required equation is:x<sup>2</sup> + y<sup>2</sup> - 4x - 8y + 15 = 0<sub>Ans</sub></p>
Q34:
Find the radius of the circle which passes through the points A(-4, -2), B(2, 6) and C(2, -2).
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Equation of the circle with center at (h, k) and radius (r) is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>.........................(1)</p> <p>Points A(-4, -2), B(2, 6) and C(2, -2) passes through the equation (1)</p> <p>(-4 - h)<sup>2</sup> + (-2 - k)<sup>2</sup> = r<sup>2</sup>.......................(2)</p> <p>(2 - h)<sup>2</sup> + (6 - k)<sup>2</sup> = r<sup>2</sup>..........................(3)</p> <p>(2 - h)<sup>2</sup> + (-2 - k)<sup>2</sup> = r<sup>2</sup>........................(4)</p> <p>Taking equation (2) and (3) and solving:</p> <p>(-4 - h)<sup>2</sup> + (-2 - k)<sup>2</sup> =(2 - h)<sup>2</sup> + (6 - k)<sup>2</sup></p> <p>or, 16 + 8h + h<sup>2</sup> + 4 + 4k + k<sup>2</sup> = 4 - 4h + h<sup>2</sup> + 36 - 12k + k<sup>2</sup></p> <p>or, 8h + 4k + 20 = 40 - 4h - 12k</p> <p>or, 8h + 4h + 4k + 12k = 40 - 20</p> <p>or, 12h + 16k = 20</p> <p>or, 4(3h + 4k) = 20</p> <p>or, 3h + 4k = \(\frac {20}4\)</p> <p>or, 3h + 4k = 5........................(5)</p> <p>Taking equation (3) and (4) and solving:</p> <p>(2 - h)<sup>2</sup> + (6 - k)<sup>2</sup> =(2 - h)<sup>2</sup> + (-2 - k)<sup>2</sup></p> <p>or, 4 - 4h + h<sup>2</sup> + 36 - 12k + k<sup>2</sup> = 4 - 4h + h<sup>2</sup> + 4 + 4k + k<sup>2</sup></p> <p>or, 40 - 4h - 12k = 8 - 4h + 4k</p> <p>or, -12k - 4k = 8 - 40</p> <p>or, -16k = - 32</p> <p>or, k = \(\frac {-32}{-16}\)</p> <p>∴ k = 2</p> <p>Putting the value of k in equation (5)</p> <p>3h + 4× 2 = 5</p> <p>or, 3h + 8 = 5</p> <p>or, 3h = 5 - 8</p> <p>or, h = \(\frac {-3}3\)</p> <p>∴ h = -1</p> <p>Now,</p> <p>Center (h, k) = (-1, 2)</p> <p>One point = B(2, 6)</p> <p>\begin{align*} Radius\; (r) &= \sqrt {(x_2 - x_1)^2 + (y_2 - y_1)^2}\\ &= \sqrt {(2 + 1)^2 + (6 - 2)^2}\\ &= \sqrt {3^2 + 4^2}\\ &= \sqrt {9 + 16}\\ &= \sqrt {25}\\ &= 5\; units\\ \end{align*}</p> <p>∴ Radius of circle is 5 units.<sub>Ans</sub></p>
Q35:
Find the equation of the circle whose center is (2, 1) and which just touches the line 3x + 4y + 1 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let: r be the radius of the circle.</p> <p>Then: its equation is:</p> <p>(x - 2)<sup>2</sup> + (y - 1)<sup>2</sup> = r<sup>2</sup>..........................(1)</p> <p>The given line will be tangent to the circle. If it's perpendicular distance from the center is equal to the radius.</p> <p>\begin{align*} r &= \begin {vmatrix} \frac {Ax\;+\; By\;+\; C}{\sqrt {A^2 + B^2}} \end {vmatrix}\\ &= \begin {vmatrix} \frac {3 × 2 + (-4) × 1 + 1}{\sqrt {(3)^2 + (-4)^2}}\\ \end {vmatrix}\\ &= \begin {vmatrix} \frac {6-4+1}{\sqrt {9 + 16}}\\ \end {vmatrix}\\ &= \begin {vmatrix} \frac {3}{\sqrt {5}}\\ \end {vmatrix}\\ &= \frac 35\\ \end{align*}</p> <p>Now,</p> <p>Putting the value of r in equation (1)</p> <p>(x - 2)<sup>2</sup> + (y - 1)<sup>2</sup> = (\(\frac 35)^2\)</p> <p>or, x<sup>2</sup> - 4x + 4 + y<sup>2</sup> - 2y + 1 = \(\frac 9{25}\)</p> <p>or, 25x<sup>2</sup> - 100x + 100 + 25y<sup>2</sup> - 50y + 25 - 9 = 0</p> <p>or, 25x<sup>2</sup> + 25y<sup>2</sup> - 100x - 50y + 116 = 0</p> <p>Hence, the required equation is:25x<sup>2</sup> + 25y<sup>2</sup> - 100x - 50y + 116 = 0<sub>Ans</sub></p>
Q36:
Prove that the line 3x + y + 7\(\sqrt {10}\) = 0 is tangent to the circle x2 + y2 - 2x + 6y - 39 = 0.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>The eq<sup>n</sup> of circle is:</p> <p>x<sup>2</sup> + y<sup>2</sup> - 2x + 6y - 39 = 0</p> <p>or, x<sup>2</sup> - 2.x.1 + 1<sup>2</sup> - 1<sup>2</sup> + y<sup>2</sup> + 2.y.3 + 3<sup>2</sup> - 3<sup>2</sup> - 39 = 0</p> <p>or, (x - 1)<sup>2</sup> + (y + 3)<sup>2</sup> - 1 - 9 - 39 = 0</p> <p>or, (x - 1)<sup>2</sup> + (y + 3)<sup>2</sup> - 49 = 0</p> <p>or, (x - 1)<sup>2</sup> + (y + 3)<sup>2</sup>= 49</p> <p>or, (x - 1)<sup>2</sup> + (y + 3)<sup>2</sup>=7<sup>2</sup>........................(1)</p> <p>The eq<sup>n</sup> of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>........................(2)</p> <p>Comparing equation (1) and (2)</p> <p>Center of circle (h, k) = (1, -3)</p> <p>Radius (r) = 7</p> <p>The given equation of a line is:3x + y + 7\(\sqrt {10}\) = 0</p> <p>The length of the perpendicular drawn from the center (1, -3) on the line3x + y + 7\(\sqrt {10}\) = 0 is:</p> <p>\begin{align*} d &= \frac {3 × 1 - 3 + 7\sqrt {10}}{\sqrt {3^2 + 1^2}}\\ &= \frac {7\sqrt {10}}{\sqrt {10}}\\ &= 7\\ \end{align*}</p> <p>Length of the perpendicular = radius of the circle = 7 units</p> <p>∴ 3x + y + 7\(\sqrt {10}\) = 0 is tangent to the circle.<sub>Proved</sub></p>
Q37:
Find the equation of the tangent to the circle x2 + y2 + 6x - 2y - 15 = 0 at a point (2, 2).
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>The equation of circle is:</p> <p>x<sup>2</sup> + y<sup>2</sup> + 6x - 2y - 15 = 0</p> <p>or, x<sup>2</sup> + 2.x.3 + 3<sup>2</sup> - 3<sup>2</sup> + y<sup>2</sup> - 2.y.1 + 1<sup>2</sup> - 1<sup>2</sup> - 15 = 0</p> <p>or, (x + 2)<sup>2</sup> + (y - 1)<sup>2</sup> - 9 - 1 - 15 = 0</p> <p>or, (x + 2)<sup>2</sup> + (y - 1)<sup>2</sup> - 25 = 0</p> <p>or, (x + 2)<sup>2</sup> + (y - 1)<sup>2</sup>= 25</p> <p>or, (x + 2)<sup>2</sup> + (y - 1)<sup>2</sup>=5<sup>2</sup>........................(1)</p> <p>The eq<sup>n</sup> of circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>......................(2)</p> <p>Comparing (1) and (2)</p> <p>Center (h, k) = (-3, 1) and radius (r) = 5</p> <p>The point of contact is: A(2, 2)</p> <p>Slope of OA = \(\frac {y_2 - y_1}{x_2 - x_1}\) = \(\frac {2 -1}{2 + 3}\) = \(\frac 15\)</p> <p>Slope of the tangent PQ (m) = -5</p> <p>Equation of the tangent PQ at (2, 2) is:</p> <p>y - y<sub>1</sub> = m(x - x<sub>1</sub>)</p> <p>or, y - 2 = -5(x - 1)</p> <p>or, y - 2 = -5x + 5</p> <p>or, 5x + y = 5 + 2</p> <p>∴ 5x + y = 7<sub>Ans</sub></p>
Q38:
Find the equation of the circle which passes through the points (3, 2) and (5, 4) and the center lies on the line 3x - 2y = 1.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let: The center of circle is be (h, k) and radius be r.</p> <p>Equation of circle is:</p> <p>(x - h)<sup>2</sup> + (y - h)<sup>2</sup> = r<sup>2</sup>....................(1)</p> <p>The point (3, 2) and (5, 4) passes through eq<sup>n</sup> (1)</p> <p>(3 - h)<sup>2</sup> + (2 - k)<sup>2</sup> = r<sup>2</sup>....................(2)</p> <p>(3 - h)<sup>2</sup> + (4 - k)<sup>2</sup> = r<sup>2</sup>....................(3)</p> <p>From (2) and (3)</p> <p>(3 - h)<sup>2</sup> + (2 - k)<sup>2</sup> =(3 - h)<sup>2</sup> + (4 - k)<sup>2</sup></p> <p>or, 9 - 6h + h<sup>2</sup> + 4 - 4k + k<sup>2</sup> = 25 - 10h + h<sup>2</sup> + 16 - 8k + k<sup>2</sup></p> <p>or, 4h + 4k - 28 = 0</p> <p>or, 4(h + k - 7) = 0</p> <p>or, h + k - 7 = 0</p> <p>or, h = 7 - k.................(4)</p> <p>The point (h, k) lines in the line:</p> <p>3x - 2y = 1</p> <p>3h - 2k = 1...................(5)</p> <p>Putting the value of (h, k) in eq<sup>n</sup>(5)</p> <p>3(7 - k) - 2k = 1</p> <p>or, 21 - 3k - 2k = 1</p> <p>or, 21 - 5k = 1</p> <p>or, -5k = 1 - 21</p> <p>or, -5k = -20</p> <p>or, k = \(\frac {-20}{-5}\)</p> <p>∴ k = 4</p> <p>Putting the value of k in eq<sup>n</sup> (4)</p> <p>h = 7 - k = 7 - 4 = 3</p> <p>Putting the value of (h, k) in eq<sup>n</sup> (2)</p> <p>(3 - 3)<sup>2</sup> + (2 - 4)<sup>2</sup> = r<sup>2</sup></p> <p>or, 0 + (-2)<sup>2</sup> = r<sup>2</sup></p> <p>or, r<sup>2</sup> = 4</p> <p>∴ r = 2</p> <p>Putting the value of (h, k) in eq<sup>n</sup> (1)</p> <p>(x - 3)<sup>2</sup> + (y - 4)<sup>2</sup> = 2<sup>2</sup></p> <p>or, x<sup>2</sup> - 6x + 9 + y<sup>2</sup> - 8y + 16 = 4</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 6x - 8y + 25 - 4 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 6x - 8y + 21 = 0<sub> Ans</sub></p> <p></p>
Q39:
Find the equation of the circle whose center is the point of intersection of x + 2y - 1 = 0 and 2x - y - 7 = 0 and which passes through (3, 1).
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Here,</p> <p>x + 2y - 1 = 0.....................(1)</p> <p>2x - y - 7 = 0......................(2)</p> <p>Eq<sup>n</sup> (1) is multiplied by 2 and adding with eq<sup>n</sup> (1)</p> <table width="192"><tbody><tr><td>4x</td> <td>-</td> <td>2y</td> <td>-</td> <td>14</td> <td>=</td> <td>0</td> </tr><tr><td>x</td> <td>+</td> <td>2y</td> <td>-</td> <td>1</td> <td>=</td> <td>0</td> </tr><tr><td>5x</td> <td></td> <td></td> <td>-</td> <td>15</td> <td>=</td> <td>0</td> </tr></tbody></table><p>or, 5x = 15</p> <p>or, x = \(\frac {15}5\)</p> <p>∴ x = 3</p> <p>Putting the value of x in eq<sup>n</sup> (1)</p> <p>x + 2y - 1 = 0</p> <p>or, 3 + 2y - 1 = 0</p> <p>or, 2y = -2</p> <p>or, y = -\(\frac 22\)</p> <p>∴ y = -1</p> <p>The center of circle = (h, k) = (3, -1)</p> <p>\begin{align*} The\; radius\; of\; the\; circle\; (r) &= \sqrt {(3 - 3)^2 + (1 - (-1))^2}\\ &= \sqrt {0 + (-2)^2}\\ &= \sqrt 4\\ &= 2\; units \end{align*}</p> <p>The eq<sup>n</sup> of circle is: (x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>.........................(3)</p> <p>Putting the value of (h, k) and r in eq<sup>n</sup> (2)</p> <p>(x - 3)<sup>2</sup> + (y + 1)<sup>2</sup> = 2<sup>2</sup></p> <p>or, x<sup>2</sup>- 6x + 9 + y<sup>2</sup>+ 2y + 1 = 4</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 6x + 2y + 10 - 4 = 0</p> <p>∴ x<sup>2</sup> + y<sup>2</sup> - 6x + 2y + 6 = 0<sub>Ans</sub></p>
Q40:
The center of a circle which passes through the origin and the point (4, 2) lies on the line x + y = 1. Find the equation of the circle.
Type: Long
Difficulty: Easy
Show/Hide Answer
Answer: <p>Let:</p> <p>Center of the circle be (h, k) and radius be r.</p> <p>Equation of the circle is:</p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup>......................(1)</p> <p>The point (0, 0) and (4, 2) are passing through the eq<sup>n</sup> (1)</p> <p>(0 - h)<sup>2</sup> + (0 - k)<sup>2</sup> = r<sup>2</sup></p> <p>h<sup>2</sup> + k<sup>2</sup> = r<sup>2</sup>.................(2)</p> <p>(4 - h)<sup>2</sup> + (2 - k)<sup>2</sup> = r<sup>2</sup>.......................(3)</p> <p>From eq<sup>n</sup> (2) and (3)</p> <p>h<sup>2</sup> + k<sup>2</sup> =(4 - h)<sup>2</sup> + (2 - k)<sup>2</sup></p> <p>or, h<sup>2</sup> + k<sup>2</sup> = 16 - 8h + h<sup>2</sup> + 4 - 4k + k<sup>2</sup></p> <p>or, 8h + 4k - 20 = 0</p> <p>or, 4(2h + k - 5) = 0</p> <p>or, 2h + k - 5 = 0</p> <p>or, k = 5 - 2h...........................(4)</p> <p>The point (h, k) lies on the line:</p> <p>x + y = 1</p> <p>h + k = 1........................(5)</p> <p>Putting the value of k in eq<sup>n</sup> (5)</p> <p>h + 5 - 2h = 1</p> <p>or, 5 - 1 = h</p> <p>∴h = 4</p> <p>Putting the value of h in eq<sup>n</sup> (4)</p> <p>k = 5 - 2h = 5 - 2× 4 = 5 - 8 = -3</p> <p>Putting the value of (h, k) = (4, -3) in eq<sup>n</sup> (2)</p> <p>h<sup>2</sup> + k<sup>2</sup> = r<sup>2</sup></p> <p>or, r<sup>2</sup> = 4<sup>2</sup> + (-3)<sup>2</sup></p> <p>or, r<sup>2</sup> = 16 + 9</p> <p>or, r<sup>2</sup> = 25</p> <p>∴ r = 5</p> <p>Putting the value of (h, k) and r in the eq<sup>n</sup></p> <p>(x - h)<sup>2</sup> + (y - k)<sup>2</sup> = r<sup>2</sup></p> <p>or, (x - 4)<sup>2</sup> + (y + 3)<sup>2</sup> = 5<sup>2</sup></p> <p>or, x<sup>2</sup>- 8x + 16 + y<sup>2</sup> + 6y + 9 = 25</p> <p>or, x<sup>2</sup> + y<sup>2</sup> - 8x + 6y + 25 - 25 = 0</p> <p>∴x<sup>2</sup> + y<sup>2</sup> - 8x + 6y = 0<sub>Ans</sub></p>