Galaxies and Constellation

A galaxy is a huge assembly of stars, dust and gases, mutually held together by gravitational force . Millions of stars are present in the galaxy and the diameter of galaxy ranges from 1000 light years to one million light years. This note contains information on types and examples of galaxies and constellations.

Summary

A galaxy is a huge assembly of stars, dust and gases, mutually held together by gravitational force . Millions of stars are present in the galaxy and the diameter of galaxy ranges from 1000 light years to one million light years. This note contains information on types and examples of galaxies and constellations.

Things to Remember

  • A galaxy is a huge assembly of stars, dust and gases, mutually held together by gravitational force . Galaxies are of three types elliptical, spiral, and irregular.
  • The galaxy which look like a flat elliptical disc are called elliptical galaxy.
  • A spiral galaxy consist of a center core part called nucleus above which system of arms. Our galaxy milky way is also spiral.
  • The galaxy whose shapes are neither elliptical nor spiral but any irregular shape are called irregular galaxy.
  • Some of the stars in the galaxy stay in a group called constellation. They forms our zodiac sign.

MCQs

No MCQs found.

Subjective Questions

Q1:

Without using calculator or table, find the value of cos75°.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>cos75&deg;</p> <p>= cos (45&deg; + 30&deg;)</p> <p>= cos45&deg; &sdot; cos30&deg; - sin45&deg;&sdot; sin30&deg;</p> <p>= \(\frac {1}{\sqrt 2}\) &sdot;\(\frac {\sqrt 3}{2}\) - \(\frac 1{\sqrt 2}\) &sdot;\(\frac 12\)</p> <p>= \(\frac {\sqrt 3}{2\sqrt 2}\) - \(\frac 1{2\sqrt 2}\)</p> <p>= \(\frac {\sqrt 3 - 1}{2\sqrt 2}\) <sub>Ans</sub></p>

Q2:

Find the value of tan15° without using calculator or table.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>tan15&deg;</p> <p>= tan (60&deg; - 45&deg;)</p> <p>= \(\frac {tan60&deg; - tan45&deg;}{1 + tan60&deg; &sdot;tan45&deg;}\)</p> <p>= \(\frac {\sqrt 3 - 1}{1 + \sqrt 3 &sdot; 1}\)</p> <p>= \(\frac {\sqrt 3 - 1}{\sqrt 3 + 1}\)&times; \(\frac {\sqrt 3 - 1}{\sqrt 3 - 1}\)</p> <p>= \(\frac {(\sqrt 3 - 1)^2}{{(\sqrt 3)^2}-{1^2}}\)</p> <p>= \(\frac {3 - 2 {\sqrt 3 + 1}}{3 - 1}\)</p> <p>= \(\frac {4 -2{\sqrt 3}}{2}\)</p> <p>= \(\frac {2(2 - \sqrt 3)}{2}\)</p> <p>= 2 - \(\sqrt 3\)<sub>Ans</sub></p>

Q3:

Find the value of sin 75° sin 15° without using calculator or table.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>sin 75&deg; sin 15&deg;</p> <p>= sin (45&deg; + 30&deg;) sin (45&deg; - 30&deg;)</p> <p>= (sin 45&deg; cos 30&deg; + cos45&deg; sin30&deg;) (sin 45&deg; cos 30&deg; - cos 45&deg; sin30&deg;)</p> <p>= (\(\frac 1{\sqrt 2}\)&sdot;\(\frac {\sqrt 3}{2}\) + \(\frac 1{\sqrt 2}\)&sdot;\(\frac {1}{2}\))(\(\frac 1{\sqrt 2}\)&sdot;\(\frac {\sqrt 3}{2}\) -\(\frac 1{\sqrt 2}\)&sdot;\(\frac {1}{2}\))</p> <p>= (\(\frac {\sqrt 3}{2\sqrt 2}\))<sup>2</sup> -(\(\frac {1}{2\sqrt 2}\))<sup>2</sup></p> <p>= \(\frac 38\) - \(\frac 18\)</p> <p>= \(\frac {3 - 1}{8}\)</p> <p>= \(\frac 28\)</p> <p>= \(\frac 14\) <sub>Ans</sub></p>

Q4:

Find the value of cos 105° cos 15° without using calculator or table.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>cos 105&deg; cos 15&deg;</p> <p>= cos (60&deg; + 45&deg;) cos (60&deg; - 45&deg;)</p> <p>= (cos 60&deg; cos 45&deg; - sin 60&deg; sin 45&deg;) (cos 60&deg; cos 45&deg; + sin 60&deg; sin 45&deg;)</p> <p>= (cos 60&deg; cos 45&deg;)<sup>2</sup> - (sin 60&deg; sin 45&deg;)<sup>2</sup></p> <p>= (\(\frac 12\) &times; \(\frac {1}{\sqrt 2}\))<sup>2</sup> - (\(\frac {\sqrt 3}{2}\) &times; \(\frac {1}{\sqrt 2}\))<sup>2</sup></p> <p>= \(\frac 18\) - \(\frac 38\)</p> <p>= \(\frac {1 - 3}{8}\)</p> <p>= \(\frac {-2}{8}\)</p> <p>= \(\frac {-1}{4}\) <sub>Ans</sub></p> <p></p>

Q5:

Without usinga calculator or a table, calculate the value of cos 105°.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>cos 105&deg;</p> <p>= cos (60&deg; + 45&deg;)</p> <p>= cos 60&deg; cos 45&deg; - sin 60&deg; sin 45&deg;</p> <p>= \(\frac 12\)&sdot; \(\frac 1{\sqrt 2}\) -\(\frac {\sqrt 3}2\)&sdot; \(\frac 1{\sqrt 2}\)</p> <p>= \(\frac {1 - \sqrt 3}{2\sqrt 2}\) <sub>Ans</sub></p>

Q6:

Prove that:

1 - tan 35° tan 10° = tan 35° + tan 10°


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>10&deg; + 35&deg; = 45&deg;</p> <p>Putting tan on both sides,</p> <p>tan (10&deg; + 35&deg;) = tan 45&deg;</p> <p>or, \(\frac {tan 10&deg; + tan 35&deg;}{1 - tan 10&deg; tan 35&deg;}\) = 1</p> <p>or, tan 10&deg; + tan 35&deg; = 1 - tan 10&deg; tan35&deg;</p> <p>or, 1 - tan 10&deg; tan 35&deg; = tan 10&deg; + tan 35&deg;</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q7:

If A + B = 45° , prove that: 

(1 + tan A) (1 + tan B) = 2


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A + B = 45&deg;</p> <p>Putting tan on both;</p> <p>tan (A + B) = tan 45&deg;</p> <p>or, \(\frac {tan A + tan B}{1 - tan A tan B}\) = 1</p> <p>or, tan A + tan B = 1 - tan A tan B</p> <p>or, tan A + tan B + tan A tan B = 1</p> <p>or, tan A + tan B + tan A tan B + 1 = 1 + 1</p> <p>or, tan A + tan A tan B + 1 + tan B = 2</p> <p>or, tan A (1 + tan B) + 1 (1 + tan B) = 2</p> <p>or, (1 + tan B) (tan A + 1) = 2</p> <p>&there4; (1 + tan A) (1 + tan B) = 2</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q8:

Prove that:

cot (A - B) = \(\frac {cot A cot B + 1}{cot B - cot A}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cot (A - B)</p> <p>= \(\frac {cos (A - B)}{sin (A - B)}\)</p> <p>= \(\frac {cos A cos B + sin A sin B}{sin A cos B - cos A sin B}\)</p> <p>=\(\frac {\frac {cos A cos B}{sin A sin B}+ \frac{sin A sin B}{sin A sin B}}{\frac {sin A cos B}{sin A sin B}+ \frac{cos A sin B}{sin A sin B}}\)</p> <p>= \(\frac {cot A cot B + 1}{cot B - cot A}\)</p> <p>= R.H.S <sub>Proved</sub></p>

Q9:

If A + B = 45°, show that:

tan A + tan B + tan A⋅tan B = 1 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A + B = 45&deg;</p> <p>Taking tan on both sides:</p> <p>tan (A + B) = tan 45&deg;</p> <p>or, \(\frac {tan A + tan B}{1 - tan A tan B}\) = 1</p> <p>or, tan A + tan B = 1 - tan A tan B</p> <p>or, tan A + tan B + tan A tan B = 1</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q10:

Prove that:

1 - tan 20° tan 25° = tan 20° + tan 25°


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>20&deg; + 25&deg; = 45&deg;</p> <p>Taking tan on both sides,</p> <p>tan (20&deg; + 25&deg;) = tan 45&deg;</p> <p>or, \(\frac {tan 20&deg; + tan 25&deg;}{1 - tan 20&deg; tan 25&deg;}\) = 1</p> <p>or, tan 20&deg; + tan 25&deg; = 1 - tan 20&deg; tan 25&deg;</p> <p>&there4; 1 - tan 20&deg; tan 25&deg; = tan 20&deg; + tan 25&deg;</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q11:

If tan α = \(\frac 56\) and tan β = \(\frac 1{11}\), prove that: 

α + β = \(\frac {π^2}4\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>tan (&alpha; + &beta;) = \(\frac {tan&alpha; + tan&beta;}{1 - tan &alpha; tan &beta;}\)</p> <p>or, tan (&alpha; + &beta;) =\(\frac {\frac 56 + \frac 1{11}}{1 - \frac56 &times; \frac {1}{11}}\)</p> <p>or, tan (&alpha; + &beta;) =\(\cfrac {\frac {55 + 5}{66}}{\frac {66 - 5}{66}}\)</p> <p>or, tan (&alpha; + &beta;) =\(\cfrac {\frac {61}{66}}{\frac {61}{66}}\)</p> <p>or, tan (&alpha; + &beta;) = \(\frac {61}{66}\)&times; \(\frac {66}{61}\)</p> <p>or, tan (&alpha; + &beta;) = 1</p> <p>or, tan (&alpha; + &beta;) = tan \(\frac {&pi;^c}{4}\)</p> <p>&there4; (&alpha; + &beta;) = \(\frac {&pi;^c}{4}\) <sub>Proved</sub></p>

Q12:

Without using table, prove that:

sin 105° + cos 105° = \(\frac {1}{\sqrt 2}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= sin 105&deg; + cos 105&deg;</p> <p>= sin (60&deg; + 45&deg;) + cos (60&deg; + 45&deg;)</p> <p>= sin 60&deg; cos 45&deg; + cos 60&deg; sin 45&deg; + cos 60&deg; cos 45&deg; - sin 60&deg; sin 45&deg;</p> <p>= \(\frac {\sqrt3}{2}\)&sdot;\(\frac 1{\sqrt 2}\) + \(\frac 12\)&sdot;\(\frac 1{\sqrt 2}\) + \(\frac 12\)&sdot;\(\frac 1{\sqrt 2}\) - \(\frac {\sqrt 3}2\)&sdot;\(\frac 1{\sqrt 2}\)</p> <p>= \(\frac {\sqrt 3}{2\sqrt 2}\) + \(\frac 1{2\sqrt 2}\) + \(\frac 1{2\sqrt 2}\) - \(\frac {\sqrt 3}{2\sqrt 2}\)</p> <p>= \(\frac {1 + 1}{2\sqrt 2}\)</p> <p>= \(\frac 2{2\sqrt 2}\)</p> <p>= \(\frac 1{\sqrt 2}\)</p> <p>= R.H.S.</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q13:

If m sin (α + θ) = n sin (β + θ), prove that :

cot θ = \(\frac {m cos α - n cos β}{n sin β - m sin α}\)


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Given,</p> <p>m sin(&alpha; + &theta;) = n sin (&beta; + &theta;)</p> <p>or, m (sin &alpha; cos &theta; + cos &alpha; sin &theta;) = n (sin &beta; cos &theta; + cos &beta; sin &theta;)</p> <p>or, msin &alpha; cos &theta; + mcos &alpha; sin &theta; = nsin &beta; cos &theta; + ncos &beta; sin &theta;</p> <p>or, msin &alpha; cos &theta; -nsin &beta; cos &theta; =ncos &beta; sin &theta; -mcos &alpha; sin &theta;</p> <p>or,cos &theta; (msin &alpha; - nsin &beta;) = sin &theta; (ncos &beta; - mcos &alpha;)</p> <p>or, \(\frac {cos &theta;}{sin &theta;}\) = \(\frac {ncos &beta; - mcos &alpha;}{msin &alpha; - nsin &beta;}\)</p> <p>&there4; cot &theta; = \(\frac {ncos &beta; - mcos &alpha;}{msin &alpha; - nsin &beta;}\) <sub>Proved </sub></p>

Q14:

Prove that:

tan 20° + tan 72° + tan 88° = tan 20° ⋅ tan 72° ⋅ tan 88° 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>20&deg; + 72&deg; + 88&deg; = 180&deg;</p> <p>20&deg; + 72&deg; = 180&deg; - 88&deg;</p> <p>Putting tan on both,</p> <p>tan (20&deg; + 72&deg;) = tan (180&deg; - 88&deg;)</p> <p>or, \(\frac {tan 20&deg; + tan 72&deg;}{1 - tan 20&deg; tan 72&deg;}\) = 0 - tan 88&deg;</p> <p>or, tan 20&deg; + tan 72&deg; = - tan 88&deg; (1 - tan 20&deg; tan 72&deg;)</p> <p>or, tan 20&deg; + tan 72&deg; = - tan 88&deg; + tan 20&deg; tan 72&deg; tan 88&deg;</p> <p>or, tan 20&deg; + tan 72&deg; + tan 88&deg; = tan 20&deg; tan 72&deg; tan 88&deg;</p> <p>Hence L.H.S. = R.H.S. <sub>Proved</sub></p>

Q15:

Prove that:

sin (x + y) - sin (x - y) = 2cos x siny


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>L.H.S.</p> <p>= sin (x + y) - sin ( x - y)</p> <p>= sin x cos y + cos x sin y - (sin x cos y - cos x sin y)</p> <p>=sin x cos y + cos x sin y - sin x cos y + cos x sin y</p> <p>= 2 cos x sin y</p> <p>= R.H.S.</p> <p>Hence L.H.S. = R.H.S. <sub>Proved</sub></p>

Q16:

If A + B = \(\frac {π^c}{4}\), prove that:

(cot A - 1) (cot B - 1) = 2

 

 


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>A + B = \(\frac {&pi;^c}{4}\)</p> <p>Taking cot on both,</p> <p>cot (A + B) = cot \(\frac {&pi;^c}{4}\)</p> <p>or, \(\frac {cot A cot B - 1}{cot B + cot A}\) = 1</p> <p>or, cot A cot B - 1 = cot B + cot A</p> <p>or, cot A cot B - cot A - cot B = 1</p> <p>or, cot A cot B - cot A - cot B + 1 = 1 + 1</p> <p>or, cot A (cot B - 1) -1 (cot B - 1) = 2</p> <p>or, (cot A - 1) (cot B - 1) = 2</p> <p>&there4; L.H.S. = R.H.S. <sub>Proved</sub></p> <p></p>

Q17:

Without using calculator or a table, prove that:

tan 55° - tan 35° = 2 tan 20°


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>55&deg; - 35&deg; = 20&deg;</p> <p>Taking tan on both sides,</p> <p>tan (55&deg; - 35&deg;) = tan 20&deg;</p> <p>or, \(\frac {tan 55&deg; - tan 35&deg;}{1 + tan 55&deg; tan35&deg;}\) = tan 20&deg;</p> <p>or, tan 55&deg; - tan 35&deg; = tan 20&deg; (1 + tan 55&deg; tan35&deg;)</p> <p>or,tan 55&deg; - tan 35&deg; = tan 20&deg; + tan 20&deg; tan35&deg; tan 55&deg;</p> <p>or, tan 55&deg; - tan 35&deg; = tan 20&deg; + tan 20&deg; tan (90&deg; - 55&deg;) tan 55&deg;</p> <p>or, tan 55&deg; - tan 35&deg; = tan 20&deg; + tan 20&deg; cot 55&deg; tan 55&deg;</p> <p>or, tan 55&deg; - tan 35&deg; = tan 20&deg; + tan 20&deg;</p> <p>&there4; tan 55&deg; - tan 35&deg; = 2 tan 20&deg;</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q18:

Prove that:

cos (A+ B + C) = cos A cos B cos C (1 - tan B tan C - tan C tan B - tan A tan B)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= cos (A + B + C)</p> <p>= cos (A + B) cos C - sin (A + B) sin C</p> <p>= (cos A cos B - sin A sin B) cos C - (sin A cos B + cos A sin B) sin C</p> <p>multiply by \(\frac {cos A cos B cos C}{cos A cos B cos C}</p> <p>= cos A cos B cos C (\(\frac {cos A cos B cos C}{cos A cos B cos C}\) - \(\frac {sin A sin B sin C}{cos A cos B cos C}\) - \(\frac {sin A cos Bsin C}{cos A cosB cos C}\) - \(\frac {cos A sin B sin C}{cos A cos B cos C}\))</p> <p>= cos A cos B cos C (1 - tan A tan B - tan A tan C - tan B tan C)</p> <p>= cos A cos B cos C (1 - tan B tan C - tan C tan A - tan A tan B)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q19:

Prove that:

\(\frac {cos 17° + sin 17°}{cos 17° - sin 17°}\) = tan 62°


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>R.H.S.</p> <p>= tan 62&deg;</p> <p>= \(\frac {sin 62&deg;}{cos 62&deg;}\)</p> <p>= \(\frac {sin (45&deg; + 17&deg;)}{cos (45&deg; + 17&deg;)}\)</p> <p>= \(\frac {sin 45&deg; cos 17&deg; + cos 45&deg; sin 17&deg;}{cos 45&deg; cos 17&deg; - sin 45&deg; sin 17&deg;}\)</p> <p>= \(\frac {\frac {1}{\sqrt 2} cos 17&deg; + \frac {1}{\sqrt 2} sin 17&deg;}{\frac {1}{\sqrt 2} cos 17&deg;- \frac {1}{\sqrt 2} sin 17&deg;}\)</p> <p>= \(\frac {\frac {1}{\sqrt 2} (cos 17&deg; + sin 17&deg;)}{\frac {1}{\sqrt 2} (cos 17&deg;- sin 17&deg;)}\)</p> <p>= \(\frac {cos 17&deg; + sin 17&deg;}{cos 17&deg; - sin 17&deg;}\)</p> <p>= L.H.S. <sub>Proved</sub></p>

Q20:

Prove that:

\(\frac {cos 8° + sin 8°}{cos 8° - sin 8°}\) = tan 53°


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>R.H.S.</p> <p>= tan 53&deg;</p> <p>= \(\frac {sin 53&deg;}{cos 53&deg;}\)</p> <p>= \(\frac {sin (45&deg; + 8&deg;)}{cos (45&deg; + 8&deg;)}\)</p> <p>= \(\frac {sin 45&deg; cos 8&deg; + cos 45&deg; sin 8&deg;}{cos 45&deg; cos 8&deg; - sin 45&deg; sin 8&deg;}\)</p> <p>= \(\frac {\frac {1}{\sqrt 2} cos 8&deg; + \frac {1}{\sqrt 2} sin 8&deg;}{\frac {1}{\sqrt 2} cos 8&deg;- \frac {1}{\sqrt 2} sin 8&deg;}\)</p> <p>= \(\frac {\frac {1}{\sqrt 2} (cos 8&deg; + sin 8&deg;)}{\frac {1}{\sqrt 2} (cos 8&deg;- sin 8&deg;)}\)</p> <p>= \(\frac {cos 8&deg; + sin 8&deg;}{cos 8&deg; - sin 8&deg;}\)</p> <p>= L.H.S. <sub>Proved</sub></p>

Q21:

If sin A = \(\frac 35\) and cos B = \(\frac 5{13}\), find the value of cos (A +B).


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin A = \(\frac 35\) and cos B = \(\frac 5{13}\)</p> <p>cos A = \(\sqrt {1 - sin^2 A}\)</p> <p>= \(\sqrt {1 - (\frac 35)^2}\)</p> <p>= \(\sqrt {1 - \frac 9{25}}\)</p> <p>= \(\sqrt {\frac {25 - 9}{25}}\)</p> <p>= \(\sqrt {\frac {16}{25}}\)</p> <p>= \(\frac 45\)</p> <p>sin B = \(\sqrt {1 - cos^2 B}\)</p> <p>= \(\sqrt {1 - (\frac 5{13})^2}\)</p> <p>= \(\sqrt {1 - \frac {25}{169}}\)</p> <p>= \(\sqrt {\frac {169 - 25}{169}}\)</p> <p>= \(\sqrt {\frac {144}{169}}\)</p> <p>= \(\frac {12}{13}\)</p> <p>Now,</p> <p>cos (A + B) = cos A cos B - sin A sin B</p> <p>= \(\frac 45\)&sdot; \(\frac 5{13}\) - \(\frac 35\)&sdot; \(\frac {12}{13}\)</p> <p>= \(\frac {20}{65}\) - \(\frac {36}{65}\)</p> <p>= \(\frac {20 - 36}{65}\)</p> <p>= -\(\frac {16}{65}\) <sub>Ans</sub></p>

Q22:

If sin A = \(\frac 1{\sqrt {10}}\), sin B = \(\frac 1{\sqrt 5}\), prove that:

A + B = \(\frac {π^2}{4}\)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Here,</p> <p>sin A = \(\frac 1{\sqrt {10}}\), sin B = \(\frac 1{\sqrt 5}\)</p> <p>cos A = \(\sqrt {1 - sin^2 A}\)</p> <p>= \(\sqrt {1 - (\frac 1{\sqrt {10}})^2}\)</p> <p>= \(\sqrt {1 - \frac 1{10}}\)</p> <p>= \(\sqrt {\frac {10 - 1}{10}}\)</p> <p>= \(\sqrt {\frac {9}{10}}\)</p> <p>= \(\frac 3{\sqrt {10}}\)</p> <p>cos B = \(\sqrt {1 - sin^2 B}\)</p> <p>= \(\sqrt {1 - (\frac 1{\sqrt 5})^2}\)</p> <p>= \(\sqrt {1 - \frac 15}\)</p> <p>= \(\sqrt {\frac {5 - 1}{5}}\)</p> <p>= \(\sqrt {\frac {4}{5}}\)</p> <p>= \(\frac 2{\sqrt 5}\)</p> <p>sin (A + B) = sin A cos B + cos A sin B</p> <p>or, sin (A + B) = \(\frac 1{\sqrt {10}}\)&times; \(\frac 2{\sqrt 5}\) + \(\frac 3{\sqrt {10}}\)&times; \(\frac 1{\sqrt 5}\)</p> <p>or, sin (A + B) = \(\frac 2{\sqrt {50}}\) + \(\frac 3{\sqrt {50}}\)</p> <p>or, sin (A + B) = \(\frac {2 + 3}{\sqrt {50}}\)</p> <p>or, sin (A + B) = \(\frac 5{\sqrt {50}}\)</p> <p>or, sin (A + B) = \(\frac 5{5\sqrt 2}\)</p> <p>or, sin (A + B) = \(\frac 1{\sqrt 2}\)</p> <p>or, sin (A + B) = sin \(\frac {&pi;^2}4\)</p> <p>&there4; A + B =\(\frac {&pi;^2}4\) <sub>Proved</sub></p>

Q23:

Prove that:

\(\frac {cos 35° + sin 35°}{cos 35° - sin 35°}\) = cot 10°


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= \(\frac {cos 35&deg; + sin 35&deg;}{cos 35&deg; - sin 35&deg;}\)</p> <p>=\(\frac {cos (45&deg; - 10&deg;) + sin (45&deg; - 10&deg;)}{cos (45&deg; - 10&deg;) - sin (45&deg; - 10&deg;)}\)</p> <p>= \(\frac {cos 45&deg; cos 10&deg; + sin 45&deg; sin 10&deg; + sin 45&deg; cos 10&deg; - cos 45&deg; sin 10&deg;}{cos 45&deg; cos 10&deg; + sin 45&deg; sin 10&deg; - sin 45&deg; cos 10&deg; + cos 45&deg; sin 10&deg;}\)</p> <p>= \(\frac {\frac 1{\sqrt 2} cos 10&deg; + \frac 1{\sqrt 2} sin 10&deg; + \frac 1{\sqrt 2} cos 10&deg; - \frac 1{\sqrt 2} sin 10&deg;}{\frac 1{\sqrt 2} cos 10&deg; + \frac 1{\sqrt 2} sin 10&deg; - \frac 1{\sqrt 2} cos 10&deg; + \frac 1{\sqrt 2} sin 10&deg;}\)</p> <p>=\(\frac {\frac 2{\sqrt 2} cos 10&deg;}{\frac 2{\sqrt 2} sin 10&deg;}\)</p> <p>= \(\frac {cos 10&deg;}{sin 10&deg;}\)</p> <p>= cot 10&deg;</p> <p>= R.H.S.<sub>Proved</sub></p> <p></p>

Q24:

Prove that:

cos (A + B)⋅cos (A - B) = cos2A - sin2B = cos2B - sin2A


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>=cos (A + B)&sdot;cos (A - B)</p> <p>= (cos A cos B - sin a sin B)(cos A cos B + sin A sin B)</p> <p>= (cos A cos B)<sup>2</sup> - (sin A sin B)<sup>2</sup></p> <p>= cos<sup>2</sup>A cos<sup>2</sup>B - sin<sup>2</sup>A sin<sup>2</sup>B</p> <p>= cos<sup>2</sup>A (1 - sin<sup>2</sup>B) - (1 - cos<sup>2</sup>A) sin<sup>2</sup>B</p> <p>= cos<sup>2</sup>A - cos<sup>2</sup>A sin<sup>2</sup>B - sin<sup>2</sup>B + cos<sup>2</sup>A sin<sup>2</sup>B</p> <p>= cos<sup>2</sup>A - sin<sup>2</sup>B (M.H.S.)</p> <p>Again,</p> <p>cos<sup>2</sup>A - sin<sup>2</sup>B</p> <p>= (1 - sin<sup>2</sup>A) - (1 - cos<sup>2</sup>B)</p> <p>= 1 - sin<sup>2</sup>A - 1 + cos<sup>2</sup>B</p> <p>= cos<sup>2</sup>B - sin<sup>2</sup>A</p> <p>&there4; L.H.S. = M.H.S. = R.H.S. <sub>Proved</sub></p>

Q25:

An angle θ is divided into two parts α and β such that tanα:tanβ = x:y show that:

sin(α - β) = \(\frac {x - y}{x + y}\) sinθ


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Given,</p> <p>&theta; =&alpha; +&beta;</p> <p>sin&theta; = sin(&alpha; + &beta;)............................(1)</p> <p>And</p> <p>\(\frac {tan&alpha;}{tan&beta;}\) = \(\frac xy\)</p> <p>\(\frac {tan&alpha; - tan&beta;}{tan&alpha; + tan&beta;}\) = \(\frac {x - y}{x + y}\).............................(2)</p> <p>Now,</p> <p>R.H.S.</p> <p>= \(\frac {x - y}{x + y}\) sin&theta;</p> <p>=\(\frac {tan&alpha; - tan&beta;}{tan&alpha; + tan&beta;}\) sin&theta;</p> <p>=\(\frac {\frac {sin&alpha;}{cos&alpha;} -\frac {sin&beta;}{cos&beta;}}{\frac {sin&alpha;}{cos&alpha;} + \frac {sin&beta;}{cos&beta;}}\) sin&theta;</p> <p>= \(\frac{\frac{sin\alpha.cos\beta - cos\alpha.sin\beta}{cos\alpha.cos\beta}}{\frac{sin\alpha.cos\beta + cos\alpha.sin\beta}{cos\alpha.cos\beta}}\). sin\(\theta\)</p> <p>= \(\frac {sin\alpha cos\beta - cos\alpha sin\beta}{sin\alpha cos\beta + cos\alpha sin\beta}\) . sin\(\theta\)</p> <p>= \(\frac {sin (\alpha - \beta)}{sin(\alpha + \beta)}\) . sin\(\theta\)</p> <p>= \(\frac {sin(\alpha - \beta)}{sin \theta}\). sin\(\theta\)</p> <p>= sin (&alpha; - &beta;)</p> <p>Hence, L.H.S. = R.H.S. <sub>Proved</sub></p>

Q26:

Prove that:

sin(A + B + C) = cosA . cosB . cosC(tanA + tanB + tanC - tanA . tanB . tanC)


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>L.H.S.</p> <p>= sin (A + B + C)</p> <p>= sin {A + (B + C)}</p> <p>= sinA . cos(B + C) + cos A . cos (B + C)</p> <p>= sinA {cosB cosC - sinB sinC} + cosA {sinB cosC + cosB sinC}</p> <p>= sinA cosB cosC - sinA sinB sinC + cosA sinB cosC + cosA cosB sinC</p> <p>= cosA cosB cosC[\(\frac {sinA cosB cosC - sinA sinB sinC + cosA sinB cosC + cosA cosB sinC}{cosA cosB cosC}\)]</p> <p>= cosA cosB cosC [tanA - tanA tanB tanC + tanB + tanC]</p> <p>= cosA cosB cosC [tanA + tanB + tanC- tanA tanB tanC ]</p> <p>&there4; L.H.S. = R.H.S. <sub>Proved</sub></p>

Q27: Cos36°=?5+1/4
Type: Long Difficulty: Easy

Q28: IF 1/SinA+1/CosA=1/SinB+1/CosB ,PROVE THAT: Cot{(A+B)/2}=TanA.TanB
Type: Long Difficulty: Easy

Q29: Prove that: cot (A - B) = cotAcotB+1cotB?cotA
Type: Short Difficulty: Easy

Videos

Evaluating Trig Ratios for Any Angle Between 0 and 360
How to solve problems based on trigonometric ratios of compound angles?
Galaxies and Constellation

Galaxies and Constellation

A galaxy is a huge assembly of stars, dust and gases, mutually held together by gravitational force . Millions of stars are present in the galaxy and the diameter of galaxy ranges from 1000 light years to one million light years. Our universe contains many galaxies and each galaxy has about billions of stars.

Types of galaxy:

  • Elliptical galaxy:
    :The galaxy which look like a flat elliptical disc are called elliptical galaxy.The stars of this type of galaxy are quite old and advance in evolution.It is the most common galaxy.
  • Spiral galaxy:
    A spiral galaxy consist of a center core part called nucleus above which system of arms and spiral out the number of arms which spiral about the nucleus may be one old and advance evolution. Adomic and milky way are spiral galaxy.
  • Irregular galaxy:
    The galaxy whose shapes are neither elliptical nor spiral but any irregular shape are called irregular galaxy.This type of galaxy are less brighter than the spiral galaxy.

Constellation:

Some of the stars in the galaxy stay in a group called constellation such group of stars staying in certain patterns can be seen clearly in clear moonless night. As looking from the earth, the group of stars resemble with some animals, a group of people, some object, etc . On the basis of what they resemble to,they are given different names. About 88 constellation are known sufor and 12 of them are considered as zodiac. E.g. Ursa major, Scorpio, Orion, etc.

Lesson

The Universe

Subject

Science

Grade

Grade 10

Recent Notes

No recent notes.

Related Notes

No related notes.