Trigonometric Ratios of Sub Multiple Angles
If A is an angle, then \(\frac{A}{2}\), \(\frac{A}{3}\), \(\frac{A}{4}\) etc. are called sub - multiple angles of A.
Summary
If A is an angle, then \(\frac{A}{2}\), \(\frac{A}{3}\), \(\frac{A}{4}\) etc. are called sub - multiple angles of A.
Things to Remember
Some properties of matrix multiplication:
(i) Multiplication of matrices is, in general, not commutative, i.e. AB not equal to BA, in general.
(ii) Multiplication of matrices in associative, i.e. if A, B and C are matrices conformable for multiplication, then (AB) C = A (BC).
(iii) Multiplication of matrices is distributive with respect to addition i.e. if A, B and C are matrices conformable for the requisite addition and multiplication, then A (B + C) = AB + AC and (A + B) C = AC + BC.
(iv) If A is a square matrix and I is a null matrix of the same order, then AI = IA = A.
Sin A | 2sin \(\frac{A}{2}\) Cos \(\frac{A}{2}\) |
Cos A | Cos2 \(\frac{A}{2}\) - Sin2 \(\frac{A}{2}\) |
Cos A | 2cos2 \(\frac{A}{2}\) - 1 |
Cos A | 1 - 2 sin2 \(\frac{A}{2}\) |
1 + Cos A | 2cos2 \(\frac{A}{2}\) |
1 - Cos A | 2 sin2 \(\frac{A}{2}\) |
MCQs
No MCQs found.
Subjective Questions
Q1:
What are seas regarded as?
Type: Short Difficulty: Easy
Q2:
Mention any four problems faced by Nepal.
Type: Short Difficulty: Easy
<ul>
<li>Transportation Problem<br />Nepal has to invest a large amount of capital for roads and airways.</li>
<li>Trade Problem<br />Nepal requires a large amount of capital to export its manufactured and produced goods.</li>
<li>Cultural Problem<br />There is less chance of cultural exchange. There is less opportunity to understand each others' culture and lifestyle.</li>
<li>Economic Problem<br />Most of the landlocked countries are poor. Nepal is one of the poorest countries in the world.</li>
</ul>
<p> </p>
<p> </p>
Q3:
How does price of goods get hiked?
Type: Very_short Difficulty: Easy
Q4:
Why are European landlocked countries relatively developed than the Asian landlocked countries?
Type: Short Difficulty: Easy
Q5:
List the problems faced by landlocked countries.
Type: Short Difficulty: Easy
<ul>
<li>Land transportation costs many times higher than sea transport.</li>
<li>There may be less chance of cultural exchange.</li>
<li>A landlocked country is probably isolated from the rest of the world.</li>
<li>Due to weak international trade, a landlocked country has to suffer from the frequent price hike.</li>
</ul>
Q6:
How can the problem faced by Nepal be solved?
Type: Short Difficulty: Easy
Q7:
Why do landlocked countries bear high transit costs?
Type: Short Difficulty: Easy
Q8:
Why do landlocked countries bear trade deficit?
Type: Short Difficulty: Easy
Videos
Problems faced by landlocked countries
Problems faced by landlocked countries
Problems of Landlocked countries.

Trigonometric Ratios of Sub Multiple Angles
If A is an angle, then \(\frac{A}{2}\), \(\frac{A}{3}\), \(\frac{A}{4}\) etc. are called sub - multiple angles of A. In this section we wilol discuss about the trigonometric ratios of angle A in terms of \(\frac{A}{2}\) and \(\frac{A}{3}\) .
1. Trigonometric ratios of angle A in terms of \(\frac{A}{2}\)
(a) SinA = sin(\(\frac{A}{2}\) + \(\frac{A}{2}\)) = sin (2 .\(\frac{A}{2}\)) = 2 sin\(\frac{A}{2}\) cos\(\frac{A}{2}\)
(b) sinA = 2sin\(\frac{A}{2}\) cos\(\frac{A}{2}\) =\(\frac{2 sin \frac{A}{2} cos \frac{A}{2}}{cos^2 \frac{A}{2} + sin^2 \frac{A}{2}}\) =\(\frac{2tan \frac{A}{2}}{1 + tan^2 \frac{A}{2}}\)
(c) sinA = \(\frac{2 tan \frac{A}{2}}{1 + tan^2 \frac{A}{2}}\) =\(\frac{\frac{2}{cot \frac{A}{2}}}{1 + \frac{1}{cot^2 \frac{A}{2}}}\) = \(\frac{2 cot \frac{A}{2}}{1 + cot^2 \frac{A}{2}}\)
(d) cosA = cos(2. \(\frac{A}{2}\)) = cos\(^2\)\(\frac{A}{2}\) - sin\(^2\)\(\frac{A}{2}\)
(e) cosA = cos2\(\frac{A}{2}\) - sin\(^2\)\(\frac{A}{2}\) = 1 - sin2\(\frac{A}{2}\) - sin\(^2\)\(\frac{A}{2}\) = 1 - 2sin\(^2\)\(\frac{A}{2}\)
(f) cosA = cos2\(\frac{A}{2}\) - sin\(^2\)\(\frac{A}{2}\) = cos2\(\frac{A}{2}\) - 1 + cos2\(\frac{A}{2}\) = 2 cos2\(\frac{A}{2}\) - 1
(g) cosA = cos2\(\frac{A}{2}\) - sin\(^2\)\(\frac{A}{2}\) =\(\frac{cos^2 \frac{A}{2} - sin^2 \frac{A}{2}}{cos^2 \frac{A}{2} + sin^2 \frac{A}{2}}\) = \(\frac{1 - tan^2 \frac{A}{2}}{1 + tan^2 \frac{A}{2}}\) (By dividing numerator and denominator by cos2 \(\frac{A}{2}\))
(h) cosA = \(\frac{1 - tan^2 \frac{A}{2}}{1 + tan^2 \frac{A}{2}}\) = \(\frac{1 - \frac{1}{cot^2 \frac{A}{2}}}{{1 + \frac{1}{cot^2 \frac{A}{2}}}}\) = \(\frac{cot^2 \frac{A}{2} - 1}{cot^2 \frac{A}{2} + 1}\)
(i) tanA = tan(2. \(\frac{A}{2}\)) = \(\frac{2 tan\frac{A}{2}}{1 - tan^2 \frac{A}{2}}\)
(j) tanA = \(\frac{2 tan\frac{A}{2}}{1 - tan^2 \frac{A}{2}}\) = \(\frac{\frac{2}{cot \frac{A}{2}}}{1 - \frac{1}{cot^2 \frac{A}{2}}}\) = \(\frac{2 cot \frac{A} {2}}{cot^2 \frac{A}{2} - 1}\)
(k) cotA = cot(2 . \(\frac{A}{2}\)) = \(\frac{cot^2 \frac{A}{2} - 1}{2 cot \frac{A}{2}}\)
(l) cotA = \(\frac{cot^2 \frac{A}{2} - 1}{2cot \frac{A}{2}}\) = \(\frac{\frac{1}{tan^2 \frac{A}{2}} - 1}{tan \frac{A}{2}}\) = \(\frac{1 - tan^2 A}{2 tan \frac{A}{2}}\)
2. Some useful results
(a) 1 + cosA = 1 + cos2 \(\frac{A}{2}\) - sin2 \(\frac{A}{2}\) = 1 - sin2 \(\frac{A}{2}\) + cos2 \(\frac{A}{2}\) = cos2 \(\frac{A}{2}\) + cos2 \(\frac{A}{2}\) = 2 cos2 \(\frac{A}{2}\)
(b) 1 - cosA = 1 - (cos2 \(\frac{A}{2}\) - sin2 \(\frac{A}{2}\)) = 1 - cos2 \(\frac{A}{2}\) + sin2\(\frac{A}{2}\) = sin2 \(\frac{A}{2}\) + sin2 \(\frac{A}{2}\) = 2 sin2 \(\frac{A}{2}\)
(c) 1 + sinA = cos2 \(\frac{A}{2}\) + sin2 \(\frac{A}{2}\) + 2 sin \(\frac{A}{2}\) cos \(\frac{A}{2}\) = (cos \(\frac{A}{2}\) + sin \(\frac{A}{2}\))2
(d) 1 - sinA = cos2\(\frac{A}{2}\) + sin2\(\frac{A}{2}\) - 2 sin v cos\(\frac{A}{2}\)= (cos \(\frac{A}{2}\) - sin \(\frac{A}{2}\))2
3. Trigonometric ratios of A in terms of \(\frac{A}{3}\)
(a) cosA = cos (3 .\(\frac{A}{3}\)) = 3 cos \(\frac{A}{3}\) - 4cos \(^3\) \(\frac{A}{3}\)
(b) sinA = sin (3. \(\frac{A}{3}\)) = 3 sin \(\frac{A}{3}\)- 4 sin\(^3\) \(\frac{A}{3}\)
(c) tanA = tan (3. \(\frac{A}{3}\)) = \(\frac{3 tan \frac{A}{3} - tan^3 \frac{A}{3}}{1 - 3 tan^2 \frac{A}{3}}\)
S. N. | Multiple Angle formulae | Sub - Multiple Angle formulae |
1 | sin2A = 2 sinA. cosA | sinA = 2sin \(\frac{A}{2}\). cos \(\frac{A}{2}\) |
2 | sin2A = \(\frac{2 tanA}{1 + tan^2 A}\) | sinA =\(\frac{2 tan A \frac{A}{2}}{1 + tan^2 \frac{A}{2}}\) |
3 | sin2A =\(\frac{2cot A}{1 + cot^2 A}\) | sinA =\(\frac{2 cot \frac{A}{2}}{1 + cot^2 \frac{A}{2}}\) |
4 | cos2A = cos2A - sin2A | cosA = cos2 \(\frac{A}{2}\) - sin2 \(\frac{A}{2}\) |
5 | cos2A = 2cos2A - 1 | cosA = 2cos2 \(\frac{A}{2}\) - 1 |
6 | cos2A = 1 - 2 sin2A | cosA = 1 - 2sin2\(\frac{A}{2}\) |
7 | cos2A =\(\frac{1 - tan^2 A}{1 + tan^2 A}\) | cos A = \(\frac{1 - tan^2 \frac{A}{2}}{1 + tan^2 \frac{A}{2}}\) |
8 | cos2A =\(\frac{cot^2 A - 1}{cot^2 A + 1}\) | cosA =\(\frac{cot^2 \frac{A}{2} - 1}{cot^2 \frac{A}{2} =+ 1}\) |
9 | tan2a =\(\frac{2 tanA}{1 - tan^2A}\) | tanA =\(\frac{2tan \frac{A}{2}}{1 - tan^2 \frac{A}{2}}\) |
10 | tan2A =\(\frac{2cot A}{cot^2 - 1}\) | tanA =\(\frac{2 cot \frac{A}{2}}{cot^2 \frac{}A{2} - 1}\) |
11 | cot2A =\(\frac{cot^2 A - 1}{2 cot A}\) | cotA =\(\frac{cot^2 \frac{A}{2} - 1}{2 co \frac{A}{2}}\) |
12 | cot2A =\(\frac{1 - tan^2 A}{2 tanA}\) | cotA =\(\frac{1 - tan^2 \frac{A}{2}}{2 tan \frac{A}{2}}\) |
13 | 13sin3A = 3sinA - 4sin\(^3\)A | sinA = 3sin \(\frac{A}{3}\) - 4sin \(\frac{A}{3}\) |
14 | cos3A = 4cos\(^3\)A - 3cosA | cosA = 4cos \(^3\) \(\frac{A}{3}\) - 3cos \(\frac{A}{3}\) |
15 | tan3A =\(\frac{3tanA - tan^3 A}{1 - tan^2 A}\) | tanA =\(\frac{3 tan \frac{A}{3} - tan^3\frac{A}{3}}{1 - 3tan^2 \frac{A}{3}}\) |
16 | 1 + cos2a = 2cos2A | 1 + cosA = 2cos2 \(\frac{A}{2}\) |
17 | 1 - cos2A = 2sin2A | 1 - cosA = 2sin2 \(\frac{A}{2}\) |
18 | 1 + sin2A = ( cosA + sinA )2 | 1 + sinA = (cos \(\frac{A}{2}\)\(\frac{A}{2}\))2 |
19 | 1 - sin2A = (cosA - sinA)2 | 1 -sinA = (cos \(\frac{A}{2}\)\(\frac{A}{2}\))2 |
Lesson
Trigonometry
Subject
Optional Mathematics
Grade
Grade 10
Recent Notes
No recent notes.
Related Notes
No related notes.