Trigonometric Ratios of Multiple Angles
If A is an angle, then 2A, 3A, 4A, 5A, etc. are called multiple angles of A.
Summary
If A is an angle, then 2A, 3A, 4A, 5A, etc. are called multiple angles of A.
Things to Remember
sin2A = 2sinA. cosA | tan2A =\(\frac{2cot A}{cot^2 A - 1}\) |
sin2A =\(\frac{2tan A}{1 + tan^2 A}\) | cot2A =\(\frac{cot^2 A - 1}{2cot A}\) |
sin2A =\(\frac{2cot A}{1 + cot^2 A}\) | cot2A =\(\frac{1 - tan^2 A}{2tan A}\) |
cos2A = cos2A - sin2A | 1 + cos2A = 2cos2A |
cos2A = 1 - 2sin2A | 1 - cos2A = 2 sin2A |
cos2A = 2cos2A - 1 | 1 + sin2A = (cosA + sinA)2 |
cos2A =\(\frac{1 - tan^2 A}{1 + ttan^2 A}\) | 1 - sin2A = (cosA - sinA)2 |
cos2A =\(\frac{cot^2 A - 1}{cot^2 A + 1}\) | sin3A = 3 sinA - 4 sin \(^3\) A |
tan2A =\(\frac{2 tan A}{1 - tan^2 A}\) | cos3A = 4 cos\(^3\)A - 3cos A |
tan3 A =\(\frac{3 tan A - tan^3 A}{1 - 3tan^2 A}\) |
MCQs
No MCQs found.
Subjective Questions
Q1:
How was the Chinese society during the rule of Shang dynasty? Mention.
Type: Very_short Difficulty: Easy
Q2:
Explain the social condition during the reign of Zhou in China.
Type: Short Difficulty: Easy
Q3:
What were the classes of people in China? Explain.
Type: Long Difficulty: Easy
Q4:
What do you mean by civilization?
Type: Short Difficulty: Easy
Q5:
What are the main rivers of China?
Type: Short Difficulty: Easy
Q6:
What are the large towns that are situated on the banks of Hwang Ho River?
Type: Short Difficulty: Easy
Q7:
What are the modern towns situated on the banks of Hwang-Ho river?
Type: Short Difficulty: Easy
Q8:
Which river is known as Huang-Ho river?
Type: Short Difficulty: Easy
Q9:
Who built the Great Wall of China?
Type: Very_short Difficulty: Easy
Q10:
Who are Mandarins?
Type: Very_short Difficulty: Easy
Q11:
How is the position of culture in China now and before?
Type: Very_short Difficulty: Easy
Videos
A Brief Introduction of the Yellow River in China
Yellow River - Wild China - BBC
Indus and Yelllow River Valley Civilizations
Everything You Need to Know About the Great Wall of China

Trigonometric Ratios of Multiple Angles
Example for Trigonometric ratios of Multiple Angles
If A is an angle, then 2A, 3A, 4A, 5A, etc. are called multiple angles of A. In this section we will discuss about the trigonometric ratios of angles 2A and 3A in terms of A.
(a) sin2A = sin(A + A) = sinA. cosA + cosA. sinA = 2sinA. cosA
(b) sin2A = 2sinA. cosA = \(\frac{2sinA. cosA}{1}\) =\(\frac{2sinA. cosA}{cos^{2}A + sin^{2}A}\) =\(\frac{\frac{2sinA. cosA}{cos^2A}}{\frac{cos^2A}{cos^2A} + \frac{sin^2A}{cos^2A}}\) = \(\frac{2tanA}{1 + tan^2A}\)
(c) sin2A =\(\frac{2tanA}{1 + tan^2 A}\) =\(\frac{\frac{2}{cotA}}{1 +\frac{1}{cot^2 A}}\) =\(\frac{2}{cotA}\)x\(\frac{cot^2A}{1 + cot^2 A}\) =\(\frac{2cotA}{1 + cot^2 A}\)
(d) cos2A = cos(A + A) = cosA. cosA - sinA. sinA = cos2A - sin2A
(e) cos2A = cos2A - sin2A = 1 - sin2A - sin2A = 1 - 2sin2A
(f) cos2A = cos2A - sin2A = cos2A - (1 - cos2A) = 2cos2A - 1
(g) cos2A = cos2A - sin2A =\(\frac{cos^2A - sin^2A}{1}\) =\(\frac{cos^2A - sin^2A}{cos^2A + sin^2A}\) =\(\frac{\frac{cos^2A}{cos^2A} - \frac{sin^2A}{cos^2A}}{\frac{cos^2A}{cos^2A} + \frac{sin^2A}{cos^2A}}\) =\(\frac{1 - tan^2A}{1 + tan^2A}\)
(h) cos2A =\(\frac{1 - tan^2A}{1 + tan^2A}\) =\(\frac{1 - \frac{1}{cot^2A}}{1 +\frac{1}{cot^2A}}\) =\(\frac{cot^2A - 1}{cot^2A + 1}\)
(i) tan2A = tan(A + B) =\(\frac{tanA + tanA}{1 - tanA. tanA}\) =\(\frac{2tanA}{1 - tan^2A}\)
(j) tan2A =\(\frac{2tanA}{1 - tan^2A}\) =\(\frac{\frac{2}{cotA}}{1 -\frac{1}{cot^2A}}\) =\(\frac{2}{cotA}\) x \(\frac{cot^2A}{cot^2A - 1}\)
(k) cot2A = cot (A + A) =\(\frac{cotA. cotA - 1}{cotA + cotA}\) =\(\frac{cot^2A - 1}{2cotA}\)
(l) cot2A =\(\frac{cot^2A - 1}{2cotA}\) =\(\frac{\frac{1}{tan^2A} - 1}{\frac{2}{tanA}}\) =\(\frac{1 - tan^2A}{tan^2A}\) x \(\frac{1 - tan^2 A}{2 tanA}\) =\(\frac{1 - tan^2 A}{2 tanA}\)
Some useful results
(a) 1 + cos2A = 1 + cos2A - sin2A = 1 - sin2A + cos2A = cos2A + cos2A = 2cos2A
(b) 1 - cos2A = 1 - (cos2A - sin2A) = 1 - cos2A + sin2A = sin2A + sin2A = 2sin2A
(c) 1 + sin2A = cos2A + sin2A + 2 sinA .cosA = cos2A + 2 cosA . sinA + sin2A = (cosA + sinA)2
(d) 1 - sin2A = cos2A + sin2A - 2sinA .cosA = cos2A - 2 cosA .sinA + sin2A = (cosA - sinA)2
Trigonometric ratios of 3A in terms of A
(a) sin3A
= sin(2A + A)
= sin2A. cosA + cos2A. sinA
= 2 sinA . cosA. cosA + (1 - 2sin2A). sinA
= 2 sinA (1 - sin2A) + sinA - 2sin\(^3\)A
= 2sinA. 2sin\(^3\)A + sinA - 2 sin\(^3\)A
= 3 sinA - 4 sin\(^3\)A
(b) cos3A
= cos (2a + A)
= cos2A. cosA - sin2A. sinA
= (2cos2A - 1) cosA - 2sinA. cosA. sinA
= 2cos\(^3\)A - cosA - 2cosA (1 - cos2A)
= 2 cos\(^3\)A - cosA - 2cosA + 2cos\(^3\)A
= 4 cos\(^3\)A - 3 cosA.
(c) tan3A
= tan( 2A + A)
=\(\frac{tan2A + tanA}{1 - tan2A. tanA}\)
=\(\frac{\frac{2 tan A}{1 - tan^2 A} + tanA}{1 -\frac{2tan A}{1 - tan^2 A}. tanA}\)
=\(\frac{2 tan A + tan A - tan^3 A}{1 - tan^2 A - 2 tan^2 A}\)
=\(\frac{3 tan A - tan^3 A}{1 - 3 tan^2 A}\)
Geometrical proof of 2A formulae :

Let, O be the centre of the circle ABC and AB be a diameter. Let ∠CAB = A.
Then, ∠COB = 2A
Here, ∠ACB = 900. Let CM is perpendicular to AB.
Then, ∠ACM = 900 - A and hence. ∠BCM = A.
Now,
sin2A =\(\frac{CM}{OC}\)
=\(\frac{2CM}{2OC}\)
=\(\frac{2CM}{AB}\)
= 2 \(\frac{CM}{AC}\). \(\frac{AC}{AB}\)
= 2sinA. cosA
And,
cos2A =\(\frac{OM}{OC}\)
=\(\frac{2OM}{2OC}\)
=\(\frac{2OM}{AB}\)
= \(\frac{(AO + OM) - (AO - OM)}{AB}\)
=\(\frac{AM - BM}{AB}\)
= \(\frac{AM}{AB}\) - \(\frac{BM}{AB}\)
= \(\frac{AM}{AC}\). \(\frac{AC}{AB}\) - \(\frac{BM}{BC}\). \(\frac{BC}{AB}\)
= cosA. cosA - sinA. sinA
= cos2A - sin2A
Again,
tan2A = \(\frac{CM}{OM}\)
= \(\frac{2CM}{2OM}\)
=\(\frac{2CM}{(AO + OM) - (AO -OM)}\)
= \(\frac{2CM}{(AO + OM) - (BO - OM)}\)
=\(\frac{2CM}{AM - BM}\)
=\(\frac{\frac{2CM}{AM}}{\frac{AM}{AM} - \frac{BM}{AM}}\)
=\(\frac{\frac{2CM}{AM}}{1 -\frac{BM}{CM}× \frac{CM}{AM}}\)
=\(\frac{2 tan A}{1 - tan A. tan A}\)
=\(\frac{2 tan A}{1 - tan^2 A}\)
Multiple angles formulae |
|
sin2A = 2sinA. cosA | tan2A =\(\frac{2cot A}{cot^2 A - 1}\) |
sin2A =\(\frac{2tan A}{1 + tan^2 A}\) | cot2A =\(\frac{cot^2 A - 1}{2cot A}\) |
sin2A =\(\frac{2cot A}{1 + cot^2 A}\) | cot2A =\(\frac{1 - tan^2 A}{2tan A}\) |
cos2A = cos2A - sin2A | 1 + cos2A = 2cos2A |
cos2A = 1 - 2sin2A | 1 - cos2A = 2 sin2A |
cos2A = 2cos2A - 1 | 1 + sin2A = (cosA + sinA)2 |
cos2A =\(\frac{1 - tan^2 A}{1 + ttan^2 A}\) | 1 - sin2A = (cosA - sinA)2 |
cos2A =\(\frac{cot^2 A - 1}{cot^2 A + 1}\) | sin3A = 3 sinA - 4 sin \(^3\) A |
tan2A =\(\frac{2 tan A}{1 - tan^2 A}\) | cos3A = 4 cos\(^3\)A - 3cos A |
tan3 A =\(\frac{3 tan A - tan^3 A}{1 - 3tan^2 A}\) |
Lesson
Trigonometry
Subject
Optional Mathematics
Grade
Grade 10
Recent Notes
No recent notes.
Related Notes
No related notes.