Trigonometric Ratios of Compound Angles

Let A and B two angles. Then their sum A + B or the difference A - B is called a compound angle. The sum or difference of any two or more than two angles is called a compound angle.

Summary

Let A and B two angles. Then their sum A + B or the difference A - B is called a compound angle. The sum or difference of any two or more than two angles is called a compound angle.

Things to Remember

Trigonometric Ratios of Compound Angles
sin(A + B) = sinA cosB + cosA sinB

sin(A - B) = sinA cosB - cosA sinB 

cos(A + B) = cosA cosB - sinA sinB cos(A - B) = cosA cosB + sinA sinB
tan(A + B) = \(\frac{tan A + tan B}{1 - tanA tanB}\) tan(A - B) =\(\frac{tanA - tanB}{1 + tanA tanB}\)
cot(A + B) =\(\frac{cotA cotB - 1}{cotB + cotA}\) cot(A - B) =\(\frac{cotA cotB + 1}{cotB - cotA}\)

MCQs

No MCQs found.

Subjective Questions

Q1:

Mention two kinds of disasters with examples of each.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>The two kinds of disasters with examples are as follows:</p>
<ul>
<li>Natural Disasters<br />Examples: Earthquakes, Volcanic eruptions etc.</li>
<li>Manmade/Artificial Disasters<br />Examples: Deforestation, Collapse of buildings, bridges etc.</li>
</ul>

Q2:

Define a disaster.


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>A disaster is a sudden calamitous event that seriously disrupts the functioning of a society and causes human, material and environmental losses that exceed the society's ability to cope using its own resources.</p>

Q3:

Give some examples of disasters and their possible relief measures.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Some examples of disasters are earthquakes, volcanic eruptions, tsunamis, landslides, soil erosions etc.<br />The possible relief measures of these disasters are as follows:</p>
<ul>
<li>An emergency kit and necessary goods such as medicines, food stocks, radio etc should be managed before the disaster.</li>
<li>Victims should cooperate with the relief teams and keep in contact.</li>
<li>The government should provide ambulances and vehicles facilities to carry victims to the hospital.</li>
</ul>
<p>&nbsp;</p>

Q4:

Mention two types of disasters with examples of each.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>The two types of disasters are as follows:</p>
<ul>
<li><strong>Earthquake</strong><br />Earthquake is a natural disaster. Earthquakes can be violent enough to toss people around and destroy whole cities. It causes a great damage to human life and property. There is no prevention of earthquakes, but the damage caused by an earthquake can be controlled by building earthquake resistant homes and being aware of an earthquake.</li>
<li><strong>Landslide</strong><br />Landslide is a man-made disaster. It causes the great damage of natural resources and human beings. To control a landslide, we have to promote afforestation. The forest can be made safe from landslide if we apply measures of prevention.</li>
</ul>

Q5:

What are the common measures that should be applied in case of a natural disaster to provide relief to the victims?


Type: Long Difficulty: Easy

Show/Hide Answer
Answer: <p>Following measures should be taken to provide relief to the victims of natural disasters:</p>
<ul>
<li>Victims should be calm and wait instead of running.</li>
<li>Victims should cooperate with the relief teams and keep in contact.</li>
<li>Electric appliances and explosive substance should be judicially used.</li>
<li>There should be the management of pure drinking water and so on.</li>
<li>An emergency kit and necessary goods such as medicines, food stocks, radio etc should be managed before the disaster.</li>
<li>The government should provide ambulances and vehicles facility to carry victims to hospitals as soon as possible.</li>
</ul>
<p>&nbsp;</p>

Q6:

What should be done to control the damage of a disaster?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Precaution and preparation should be done&nbsp;to control the damage of a disaster.</p>

Q7:

What are the  common diseases especially during the rainy season?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>Cholera, dysentery etc. are the common diseases especially during the rainy season.</p>

Q8:

Mention in one sentence how can we control  landslide and soil erosion?


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>We can control landslide and soil erosion by conducting afforestation programs.</p>

Q9:

List any two measures that can be applied in case of a disaster.


Type: Short Difficulty: Easy

Show/Hide Answer
Answer: <p>The two measures that can be applied in case of a disaster are as follows :</p>
<ul>
<li>Emergency kit and other necessary goods such as medicines, food stocks, radio etc should be managed before the disaster.</li>
<li>Ambulance and vehicles should be made available.</li>
</ul>
<p>&nbsp;</p>

Q10:

Define a disaster in a simple sentence.


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>A disaster can be defined as a sudden, accidental event that causes many deaths and injuries.</p>

Q11:

 Give some examples of disasters.


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>Following are some examples of disasters:</p>
<ul>
<li>Earthquakes</li>
<li>Landslides</li>
<li>Floods</li>
<li>Tsunamis etc.</li>
</ul>
<p>&nbsp;</p>

Q12:

 How can the risks of a disaster be minimized?


Type: Very_short Difficulty: Easy

Show/Hide Answer
Answer: <p>Risk of disaster can be minimized by:</p>
<ul>
<li>afforestation</li>
<li>sustainable development</li>
<li>preservation of natural resources</li>
</ul>

Videos

Disaster Management
Disaster Management
Drones for Disaster Management (Nepal Earthquake)
Disaster management
Trigonometric Ratios of Compound Angles

Trigonometric Ratios of Compound Angles

Let, A and B be two angles. Then their sum A + B or the difference A - B is called a compound angle.

Trigonometric ratios of A + B (Addition formula)

Let a revolving line start from OX and trace out an angle XOY = A and revolve further through an angle YOZ = B

∴ ∠XOZ = A + B

Let P be any point in OZ. Draw PM perpendicular to OX and PN perpendicular to OY From N draws NQ perpendicular to OX ad NR perpendicular to MP.

Here, ∠RPN = 90 - ∠PNR

trigonometric ratios of A+B (Addition formula)
trigonometric ratios of A+B (Addition formula)

= ∠RNO

= ∠NOQ

= A

Again, RMQN is a rectangle, so, MR = QN and RN = MQ

Now, sin(A + B) =\(\frac{MP}{OP}\)

                         = \(\frac{MR + RP}{OP}\)

                         = \(\frac{QN + RP}{OP}\)

                         = \(\frac{QN}{OP}\) + \(\frac{RP}{OP}\)

                         = \(\frac{QN}{ON}\) \(\frac{ON}{OP}\) + \(\frac{RP}{NP}\) \(\frac{NP}{OP}\)

cos(A + B) = \(\frac{OM}{OP}\)

                = \(\frac{OQ - MQ}{OP}\)

                = \(\frac{OQ - RN}{OP}\)

                = \(\frac{OQ}{OP}\) - \(\frac{RN}{OP}\)

                = \(\frac{OQ}{ON}\) \(\frac{ON}{OP}\) - \(\frac{RN}{NP}\) \(\frac{NP}{OP}\)

                = cosA cosB - sinA sinB                                 

Hence, sin formula of compound angle (A + B) is sin (A + B) = sinA cosB + cosA sinB and consine formula of compound angle (A + B) and cos(A + B) = cosA cosB - sinA sinB

Trigonometric Ratios of A - B(Subtraction formula)

Let a revolving line start from OX and trace out an angle XOY = A and then revolve back through an angle YOZ = B

∴ ∠XOZ = A - B

Let P be any point in the Line OZ. Draw PM perpendicular to OX and PN perpendicular to OY.

From N Draw NQ perpendicular to OX and perpendicular to MP produced.

Here, ∠RPN = 900 - ∠PNR

= ∠PNY

= ∠XOY

= A

Again QMRN is a rectangle. So, QN = MR and QM = NR

Now sin(A-B) =\(\frac{PM}{OP}\)

                    = \(\frac{MR - PR}{OP}\)

                    =\(\frac{QN - PR}{OP}\)

                    = \(\frac{QN}{OP}\) - \(\frac{PR}{OP}\)

                    =\(\frac{QN}{ON}\) \(\frac{ON}{OP}\) - \(\frac{PR}{NP}\) \(\frac{NP}{OP}\)

                    = sinA cosB - cosA sinB

cos(A - B) = \(\frac{OM}{OP}\)

                =\(\frac{OQ + QM}{OP}\)

                =\(\frac{OQ + NR}{OP}\)

                =\(\frac{OQ}{OP}\) + \(\frac{NR}{OP}\)

                =\(\frac{OQ}{ON}\) \(\frac{ON}{OP}\) - \(\frac{NR}{NP}\) \(\frac{NP}{OP}\)

                = cosA cosB + sinA sinB

Hence, sine formula of compound angle (A - B) is sin (A - B) = sinA cosB - cosA sinB and cosine formula of compound angle (A - B) is cos (A - B) = cosA cosB + sinA sinB

Alternative Method

Take a unit circle with centre at the origin. Let the circle intersect the X-axis at the point P. Then the coorinates of P are (1.0)

Let Q be another point on the circumference of the circle such that∠POQ = A. Then the coordinates of Q are (cosA, sinA).

Let R be another point on the cirumference of the circle such that ∠QOR = B

Then ∠POR = ∠POQ + ∠QOR = A + B

So coordinates of R are ( cos(A + B) , sin(A + B)).

Take a point S on the circumference such that ∠POS = -B.

Then coordinates of the points S are (cos(-B), sin(-B)) = (cosB, sin(-B))

Here, ∠SOQ = ∠SOP + ∠POQ = A + B and ∠POR = ∠POQ + ∠QOR = A + B

∴ ∠SOQ = ∠POR

So, arc QS = arc PR

∴ Chord QS = Chord PR.

Now by distance formula

PR2 = [cos(A + B)-1]2 + [sin(A + B) - 0]2

       = cos2 (A + B) - 2cos(A + B) + 1 + sin2 (A + B)

       = 2 - 2cos (A + B)

QS2 =(cosA - cosB)2 + [sinA - sin(-B)]2 = (cosA - cosB)2 + (sinA + sinB)2

       = cos2A - 2cosA.cosB + cos2B + sin2A + 2sinA.sinB + sin2B

       = 2 - 2cosA.cosB + 2sinA.sinB

Now, PR2 = QS2

or, 2 - 2cos(A + B) = 2 - 2cosA.cosB + 2sinA.sinB

or, cos(A + B) = cosA.cosB - sinA.sinB ........(i)

If the angle B is replaced by (-B), Then

Cos(A-B) = cosA.cos(-B) - sinA.sin(-B) = cosA.cosB + sinA.sinB .........(ii)

Again, cos[\(\frac{\pi}{2}\) - (A+B)] = cos[(\(\frac{\pi}{2}\) - A) - B)]

or, sin(A + B) = cos (\(\frac {\pi}{2}\) - A) cos B + sin (\(\frac{\pi}{2}\) - A) sin B = sinA cosB + cosA sinB ....... (iii)

Similarly, cos[\(\frac{\pi}{2}\) - (A+B)] = cos[(\(\frac{\pi}{2}\) - A) + B)]

or, sin(A - B) = cos ( \(\frac{\pi}{2}\) - A) cosB - sin( \(\frac{\pi}{2}\) - A) sinB = sinA cosB - cosA sinB .......... (iv)

Tangent formula of compound angle (A + B)

tan (A + B) = \(\frac{sin(A + B)}{cos(A + B)}\)

                  = \(\frac{sinA\; cosB + cosA\; sinB}{cosA \;cosB - sinA \;sinB}\)

                  = \(\frac {\frac {sinA\; cosB}{cosA \;cosB} + \frac {cosA \;sinB}{cosA \;cosB}}{\frac {cosA \;cosB}{cosA\; cosB} - \frac {sinA\; sinB}{cosA \;cosB}}\)

                  = \(\frac{tan A + tan B}{1 - tanA\; tanB}\)

Tangent formula of compound angle (A - B)

tan (A - B) = \(\frac{sin(A - B)}{cos(A - B)}\)

                 =\(\frac{sinA\; cosB - cosA \;sinB}{cosA \;cosB + sinA \;sinB}\)

                 =\(\frac{\frac{sinA\; cosB}{cosA\; cosB} - \frac{cosA\; sinB}{cosA \;cosB}}{\frac{cosA \;cosB}{cosA \;cosB} + \frac{sinA\; sinB}{cosA\; cosB}}\)

                 = \(\frac{tan A - tan B}{1 + tanA \;tanB}\)

Cotangent formula of compound angle (A + B)

cot (A + B) = \(\frac{cos(A + B)}{sin(A + B)}\)

                 =\(\frac{cosA\; cosB - sinA \;sinB}{sinA\; cosB + cosA\; sinB}\)

                 =\(\frac{\frac{cosA \;cosB}{sinA\; sinB} - \frac{sinA\; sinB}{sinA\; sinB}}{\frac{sinA \;cosB}{sinA\; sinB} + \frac{cosA\; sinB}{sinA\; sinB}}\)

                 =\(\frac{cotA \;cotB - 1}{cotB + cotA}\)

Cotangent formula of compound angle (A - B)

cot(A - B) = \(\frac{cos(A - B)}{sin(A - B)}\)

                =\(\frac{cosA\; cosB + sinA\; sinB}{sinA \;cosB - cosA \;sinB}\)

                =\(\frac{\frac{cosA \;cosB}{sinA\; sinB} + \frac{sinA \;sinB}{sinA \;sinB}}{\frac{sinA \;cosB}{sinA \;sinB} - \frac{cosA\; sinB}{sinA \;sinB}}\)

Trigonometric Ratios of Compound Angles
sin(A + B) = sinA cosB + cosA sinB

 sin(A - B) = sinA cosB - cosA sinB

cos(A + B) = cosA cosB - sinA sinB cos(A - B) = cosA cosB + sinA sinB
tan(A + B) = \(\frac{tan A + tan B}{1 - tanA\; tanB}\) tan(A - B) =\(\frac{tanA - tanB}{1 + tanA \;tanB}\)
cot(A + B) =\(\frac{cotA\; cotB - 1}{cotB + cotA}\) cot(A - B) =\(\frac{cotA \;cotB + 1}{cotB - cotA}\)
Some more results :

1. sin(A + B). sin(A - B) = cos2B - cos2A

Proof:

sin(A + B) .sin(A - B)

= (sinA cosB + cosA sinB) . (sinA cosB - cosA sinB)

= sin2A cos2B - cos2A sin2B

= (1 - cos2A) cos2B - cos2A(1 - cos2B)

= cos2B - cos2A cos2B - cos2A + cos2A cos2B

= cos2B - cos2A

2. sin(A + B). sin(A - B) = sin2A - sin2B

proof:

sin(A + B). sin(A - B)

= cos2B - cos2A

= 1 - sin2B - (1 - sin2A)

= sin2A - sin2B

3. cos(A + B). cos(A - B) = cos2A - sin2B

Proof :

cos (A + B). cos(A - B)

= (cosA cosB - sinA sinB) (cosA cosB + sinA sinB)

= cos2A cos2B - sin2A sin2B

= cos2A(1 - sin2B) - (1 - cos2A) sin2B

= cos2A - cos2A sin2B - sin2B + cos2A sin2B

= cos2A - cos2A sin2B - sin2B + cos2A sin2B

= cos2A - sin2A

4. cos(A + B) . cos(A - B) = cos2B - sin2A

Proof :

cos(A + B) . cos(A - B)

= cos2A - sin2B

= 1 - sin2A - (1 - cos2B)

= cos2B - sin2A

5. cot(A + B) .cot(A - B) =\(\frac{cot^{2} A. cot^{2} B - 1}{cot^{2} B - cot^{2} A}\)

Proof:

cot(A + B). cot(A - B)

= ( \(\frac{cotA. cotB - 1}{cotB + cotA}\)) ( \(\frac{cotA .cotB + 1}{cotB - cotA}\))

=\(\frac{cot^{2}A . cot^{2}B}{cot^{2}B - cot^{2}A}\)

6. tan(A + B). tan(A - B) =\(\frac{tan^{2}A - tan^{2}B}{1 - tan^{2}A . tan^{2}B}\)

Proof :

tan(A + B). tan(A - B)

= (\(\frac{tanA + tanB}{1 - tanA.tanB}\)) (\(\frac{tanA - tanB}{1 + tanA tanB}\))

= \(\frac{tan^{2}A - tan^{2}B}{1 - tan^{2}A tan^{2}B}\)

7. sin(A + B + C) = sinA cosB cosC + cosA sinB cosC + cosA cosB sinC - sinA sinB sinC

Proof :

sin(A + B + C)

= sin(A + B) cosC + cos(A + B) sinC

= (sinA cosB + cosA sinB) cosC + (cosA cosB - sinA sinB) sinC

= sinA cosB cosC + cosA sinB cosC + cosA cosB sinC - sinA sinB sinC

8. cos(A + B + C) = cosA.cosB.cosC - cosA.sinB.sinC - sinC.cosB.sinA - sinA.sinB.cosC

Proof:

cos(A + B + C)

= cos(A + B) cosC - sin(A + B) sinC

= (cosA cosB - sinA sinB) cosC - (sinA cosB + cosA sinB) sinC

= cosA.cosB.cosC - sinA sinB cosC - sinC.cosB.sinA - cosA.sinB.sinC

9. tan (A + B + C) =\(\frac{tanA + tanB + tanC - tanA tanB tanC}{1 - tanB tanC - tanC tanA - tanA tanB}\)

Proof:

tan(A + B + C)

= \(\frac{tan(A + B) + tanC}{1 - tan (A + B) tanC}\)

= \(\frac{\frac{tanA + tanB}{1 - tanA tanB} + tanC}{1 -(\frac{tanA + tanB}{1 - tanA tanB}) tanC}\)

=\(\frac{tanA + tanB + tanC - tanA tanB tanC}{1 - tanB tanC - tanC tanA - tanA tanB}\)

 

 

Lesson

Trigonometry

Subject

Optional Mathematics

Grade

Grade 10

Recent Notes

No recent notes.

Related Notes

No related notes.