Trigonometric Ratios of Compound Angles
Let A and B two angles. Then their sum A + B or the difference A - B is called a compound angle. The sum or difference of any two or more than two angles is called a compound angle.
Summary
Let A and B two angles. Then their sum A + B or the difference A - B is called a compound angle. The sum or difference of any two or more than two angles is called a compound angle.
Things to Remember
Trigonometric Ratios of Compound Angles | |
sin(A + B) = sinA cosB + cosA sinB |
sin(A - B) = sinA cosB - cosA sinB |
cos(A + B) = cosA cosB - sinA sinB | cos(A - B) = cosA cosB + sinA sinB |
tan(A + B) = \(\frac{tan A + tan B}{1 - tanA tanB}\) | tan(A - B) =\(\frac{tanA - tanB}{1 + tanA tanB}\) |
cot(A + B) =\(\frac{cotA cotB - 1}{cotB + cotA}\) | cot(A - B) =\(\frac{cotA cotB + 1}{cotB - cotA}\) |
MCQs
No MCQs found.
Subjective Questions
Q1:
Mention two kinds of disasters with examples of each.
Type: Short Difficulty: Easy
<ul>
<li>Natural Disasters<br />Examples: Earthquakes, Volcanic eruptions etc.</li>
<li>Manmade/Artificial Disasters<br />Examples: Deforestation, Collapse of buildings, bridges etc.</li>
</ul>
Q2:
Define a disaster.
Type: Very_short Difficulty: Easy
Q3:
Give some examples of disasters and their possible relief measures.
Type: Short Difficulty: Easy
<ul>
<li>An emergency kit and necessary goods such as medicines, food stocks, radio etc should be managed before the disaster.</li>
<li>Victims should cooperate with the relief teams and keep in contact.</li>
<li>The government should provide ambulances and vehicles facilities to carry victims to the hospital.</li>
</ul>
<p> </p>
Q4:
Mention two types of disasters with examples of each.
Type: Short Difficulty: Easy
<ul>
<li><strong>Earthquake</strong><br />Earthquake is a natural disaster. Earthquakes can be violent enough to toss people around and destroy whole cities. It causes a great damage to human life and property. There is no prevention of earthquakes, but the damage caused by an earthquake can be controlled by building earthquake resistant homes and being aware of an earthquake.</li>
<li><strong>Landslide</strong><br />Landslide is a man-made disaster. It causes the great damage of natural resources and human beings. To control a landslide, we have to promote afforestation. The forest can be made safe from landslide if we apply measures of prevention.</li>
</ul>
Q5:
What are the common measures that should be applied in case of a natural disaster to provide relief to the victims?
Type: Long Difficulty: Easy
<ul>
<li>Victims should be calm and wait instead of running.</li>
<li>Victims should cooperate with the relief teams and keep in contact.</li>
<li>Electric appliances and explosive substance should be judicially used.</li>
<li>There should be the management of pure drinking water and so on.</li>
<li>An emergency kit and necessary goods such as medicines, food stocks, radio etc should be managed before the disaster.</li>
<li>The government should provide ambulances and vehicles facility to carry victims to hospitals as soon as possible.</li>
</ul>
<p> </p>
Q6:
What should be done to control the damage of a disaster?
Type: Short Difficulty: Easy
Q7:
What are the common diseases especially during the rainy season?
Type: Short Difficulty: Easy
Q8:
Mention in one sentence how can we control landslide and soil erosion?
Type: Short Difficulty: Easy
Q9:
List any two measures that can be applied in case of a disaster.
Type: Short Difficulty: Easy
<ul>
<li>Emergency kit and other necessary goods such as medicines, food stocks, radio etc should be managed before the disaster.</li>
<li>Ambulance and vehicles should be made available.</li>
</ul>
<p> </p>
Q10:
Define a disaster in a simple sentence.
Type: Very_short Difficulty: Easy
Q11:
Give some examples of disasters.
Type: Very_short Difficulty: Easy
<ul>
<li>Earthquakes</li>
<li>Landslides</li>
<li>Floods</li>
<li>Tsunamis etc.</li>
</ul>
<p> </p>
Q12:
How can the risks of a disaster be minimized?
Type: Very_short Difficulty: Easy
<ul>
<li>afforestation</li>
<li>sustainable development</li>
<li>preservation of natural resources</li>
</ul>
Videos
Disaster Management
Disaster Management
Drones for Disaster Management (Nepal Earthquake)
Disaster management

Trigonometric Ratios of Compound Angles
Let, A and B be two angles. Then their sum A + B or the difference A - B is called a compound angle.
Trigonometric ratios of A + B (Addition formula)
Let a revolving line start from OX and trace out an angle XOY = A and revolve further through an angle YOZ = B
∴ ∠XOZ = A + B
Let P be any point in OZ. Draw PM perpendicular to OX and PN perpendicular to OY From N draws NQ perpendicular to OX ad NR perpendicular to MP.
Here, ∠RPN = 90 - ∠PNR

= ∠RNO
= ∠NOQ
= A
Again, RMQN is a rectangle, so, MR = QN and RN = MQ
Now, sin(A + B) =\(\frac{MP}{OP}\)
= \(\frac{MR + RP}{OP}\)
= \(\frac{QN + RP}{OP}\)
= \(\frac{QN}{OP}\) + \(\frac{RP}{OP}\)
= \(\frac{QN}{ON}\) \(\frac{ON}{OP}\) + \(\frac{RP}{NP}\) \(\frac{NP}{OP}\)
cos(A + B) = \(\frac{OM}{OP}\)
= \(\frac{OQ - MQ}{OP}\)
= \(\frac{OQ - RN}{OP}\)
= \(\frac{OQ}{OP}\) - \(\frac{RN}{OP}\)
= \(\frac{OQ}{ON}\) \(\frac{ON}{OP}\) - \(\frac{RN}{NP}\) \(\frac{NP}{OP}\)
= cosA cosB - sinA sinB
Hence, sin formula of compound angle (A + B) is sin (A + B) = sinA cosB + cosA sinB and consine formula of compound angle (A + B) and cos(A + B) = cosA cosB - sinA sinB
Trigonometric Ratios of A - B(Subtraction formula)
Let a revolving line start from OX and trace out an angle XOY = A and then revolve back through an angle YOZ = B
∴ ∠XOZ = A - B
Let P be any point in the Line OZ. Draw PM perpendicular to OX and PN perpendicular to OY.
From N Draw NQ perpendicular to OX and perpendicular to MP produced.
Here, ∠RPN = 900 - ∠PNR
= ∠PNY
= ∠XOY
= A
Again QMRN is a rectangle. So, QN = MR and QM = NR
Now sin(A-B) =\(\frac{PM}{OP}\)
= \(\frac{MR - PR}{OP}\)
=\(\frac{QN - PR}{OP}\)
= \(\frac{QN}{OP}\) - \(\frac{PR}{OP}\)
=\(\frac{QN}{ON}\) \(\frac{ON}{OP}\) - \(\frac{PR}{NP}\) \(\frac{NP}{OP}\)
= sinA cosB - cosA sinB
cos(A - B) = \(\frac{OM}{OP}\)
=\(\frac{OQ + QM}{OP}\)
=\(\frac{OQ + NR}{OP}\)
=\(\frac{OQ}{OP}\) + \(\frac{NR}{OP}\)
=\(\frac{OQ}{ON}\) \(\frac{ON}{OP}\) - \(\frac{NR}{NP}\) \(\frac{NP}{OP}\)
= cosA cosB + sinA sinB
Hence, sine formula of compound angle (A - B) is sin (A - B) = sinA cosB - cosA sinB and cosine formula of compound angle (A - B) is cos (A - B) = cosA cosB + sinA sinB
Alternative Method
Take a unit circle with centre at the origin. Let the circle intersect the X-axis at the point P. Then the coorinates of P are (1.0)
Let Q be another point on the circumference of the circle such that∠POQ = A. Then the coordinates of Q are (cosA, sinA).
Let R be another point on the cirumference of the circle such that ∠QOR = B
Then ∠POR = ∠POQ + ∠QOR = A + B
So coordinates of R are ( cos(A + B) , sin(A + B)).
Take a point S on the circumference such that ∠POS = -B.
Then coordinates of the points S are (cos(-B), sin(-B)) = (cosB, sin(-B))
Here, ∠SOQ = ∠SOP + ∠POQ = A + B and ∠POR = ∠POQ + ∠QOR = A + B
∴ ∠SOQ = ∠POR
So, arc QS = arc PR
∴ Chord QS = Chord PR.
Now by distance formula
PR2 = [cos(A + B)-1]2 + [sin(A + B) - 0]2
= cos2 (A + B) - 2cos(A + B) + 1 + sin2 (A + B)
= 2 - 2cos (A + B)
QS2 =(cosA - cosB)2 + [sinA - sin(-B)]2 = (cosA - cosB)2 + (sinA + sinB)2
= cos2A - 2cosA.cosB + cos2B + sin2A + 2sinA.sinB + sin2B
= 2 - 2cosA.cosB + 2sinA.sinB
Now, PR2 = QS2
or, 2 - 2cos(A + B) = 2 - 2cosA.cosB + 2sinA.sinB
or, cos(A + B) = cosA.cosB - sinA.sinB ........(i)
If the angle B is replaced by (-B), Then
Cos(A-B) = cosA.cos(-B) - sinA.sin(-B) = cosA.cosB + sinA.sinB .........(ii)
Again, cos[\(\frac{\pi}{2}\) - (A+B)] = cos[(\(\frac{\pi}{2}\) - A) - B)]
or, sin(A + B) = cos (\(\frac {\pi}{2}\) - A) cos B + sin (\(\frac{\pi}{2}\) - A) sin B = sinA cosB + cosA sinB ....... (iii)
Similarly, cos[\(\frac{\pi}{2}\) - (A+B)] = cos[(\(\frac{\pi}{2}\) - A) + B)]
or, sin(A - B) = cos ( \(\frac{\pi}{2}\) - A) cosB - sin( \(\frac{\pi}{2}\) - A) sinB = sinA cosB - cosA sinB .......... (iv)
Tangent formula of compound angle (A + B)
tan (A + B) = \(\frac{sin(A + B)}{cos(A + B)}\)
= \(\frac{sinA\; cosB + cosA\; sinB}{cosA \;cosB - sinA \;sinB}\)
= \(\frac {\frac {sinA\; cosB}{cosA \;cosB} + \frac {cosA \;sinB}{cosA \;cosB}}{\frac {cosA \;cosB}{cosA\; cosB} - \frac {sinA\; sinB}{cosA \;cosB}}\)
= \(\frac{tan A + tan B}{1 - tanA\; tanB}\)
Tangent formula of compound angle (A - B)
tan (A - B) = \(\frac{sin(A - B)}{cos(A - B)}\)
=\(\frac{sinA\; cosB - cosA \;sinB}{cosA \;cosB + sinA \;sinB}\)
=\(\frac{\frac{sinA\; cosB}{cosA\; cosB} - \frac{cosA\; sinB}{cosA \;cosB}}{\frac{cosA \;cosB}{cosA \;cosB} + \frac{sinA\; sinB}{cosA\; cosB}}\)
= \(\frac{tan A - tan B}{1 + tanA \;tanB}\)
Cotangent formula of compound angle (A + B)
cot (A + B) = \(\frac{cos(A + B)}{sin(A + B)}\)
=\(\frac{cosA\; cosB - sinA \;sinB}{sinA\; cosB + cosA\; sinB}\)
=\(\frac{\frac{cosA \;cosB}{sinA\; sinB} - \frac{sinA\; sinB}{sinA\; sinB}}{\frac{sinA \;cosB}{sinA\; sinB} + \frac{cosA\; sinB}{sinA\; sinB}}\)
=\(\frac{cotA \;cotB - 1}{cotB + cotA}\)
Cotangent formula of compound angle (A - B)
cot(A - B) = \(\frac{cos(A - B)}{sin(A - B)}\)
=\(\frac{cosA\; cosB + sinA\; sinB}{sinA \;cosB - cosA \;sinB}\)
=\(\frac{\frac{cosA \;cosB}{sinA\; sinB} + \frac{sinA \;sinB}{sinA \;sinB}}{\frac{sinA \;cosB}{sinA \;sinB} - \frac{cosA\; sinB}{sinA \;sinB}}\)
Trigonometric Ratios of Compound Angles | |
sin(A + B) = sinA cosB + cosA sinB |
sin(A - B) = sinA cosB - cosA sinB |
cos(A + B) = cosA cosB - sinA sinB | cos(A - B) = cosA cosB + sinA sinB |
tan(A + B) = \(\frac{tan A + tan B}{1 - tanA\; tanB}\) | tan(A - B) =\(\frac{tanA - tanB}{1 + tanA \;tanB}\) |
cot(A + B) =\(\frac{cotA\; cotB - 1}{cotB + cotA}\) | cot(A - B) =\(\frac{cotA \;cotB + 1}{cotB - cotA}\) |
Some more results :
1. sin(A + B). sin(A - B) = cos2B - cos2A
Proof:
sin(A + B) .sin(A - B)
= (sinA cosB + cosA sinB) . (sinA cosB - cosA sinB)
= sin2A cos2B - cos2A sin2B
= (1 - cos2A) cos2B - cos2A(1 - cos2B)
= cos2B - cos2A cos2B - cos2A + cos2A cos2B
= cos2B - cos2A
2. sin(A + B). sin(A - B) = sin2A - sin2B
proof:
sin(A + B). sin(A - B)
= cos2B - cos2A
= 1 - sin2B - (1 - sin2A)
= sin2A - sin2B
3. cos(A + B). cos(A - B) = cos2A - sin2B
Proof :
cos (A + B). cos(A - B)
= (cosA cosB - sinA sinB) (cosA cosB + sinA sinB)
= cos2A cos2B - sin2A sin2B
= cos2A(1 - sin2B) - (1 - cos2A) sin2B
= cos2A - cos2A sin2B - sin2B + cos2A sin2B
= cos2A - cos2A sin2B - sin2B + cos2A sin2B
= cos2A - sin2A
4. cos(A + B) . cos(A - B) = cos2B - sin2A
Proof :
cos(A + B) . cos(A - B)
= cos2A - sin2B
= 1 - sin2A - (1 - cos2B)
= cos2B - sin2A
5. cot(A + B) .cot(A - B) =\(\frac{cot^{2} A. cot^{2} B - 1}{cot^{2} B - cot^{2} A}\)
Proof:
cot(A + B). cot(A - B)
= ( \(\frac{cotA. cotB - 1}{cotB + cotA}\)) ( \(\frac{cotA .cotB + 1}{cotB - cotA}\))
=\(\frac{cot^{2}A . cot^{2}B}{cot^{2}B - cot^{2}A}\)
6. tan(A + B). tan(A - B) =\(\frac{tan^{2}A - tan^{2}B}{1 - tan^{2}A . tan^{2}B}\)
Proof :
tan(A + B). tan(A - B)
= (\(\frac{tanA + tanB}{1 - tanA.tanB}\)) (\(\frac{tanA - tanB}{1 + tanA tanB}\))
= \(\frac{tan^{2}A - tan^{2}B}{1 - tan^{2}A tan^{2}B}\)
7. sin(A + B + C) = sinA cosB cosC + cosA sinB cosC + cosA cosB sinC - sinA sinB sinC
Proof :
sin(A + B + C)
= sin(A + B) cosC + cos(A + B) sinC
= (sinA cosB + cosA sinB) cosC + (cosA cosB - sinA sinB) sinC
= sinA cosB cosC + cosA sinB cosC + cosA cosB sinC - sinA sinB sinC
8. cos(A + B + C) = cosA.cosB.cosC - cosA.sinB.sinC - sinC.cosB.sinA - sinA.sinB.cosC
Proof:
cos(A + B + C)
= cos(A + B) cosC - sin(A + B) sinC
= (cosA cosB - sinA sinB) cosC - (sinA cosB + cosA sinB) sinC
= cosA.cosB.cosC - sinA sinB cosC - sinC.cosB.sinA - cosA.sinB.sinC
9. tan (A + B + C) =\(\frac{tanA + tanB + tanC - tanA tanB tanC}{1 - tanB tanC - tanC tanA - tanA tanB}\)
Proof:
tan(A + B + C)
= \(\frac{tan(A + B) + tanC}{1 - tan (A + B) tanC}\)
= \(\frac{\frac{tanA + tanB}{1 - tanA tanB} + tanC}{1 -(\frac{tanA + tanB}{1 - tanA tanB}) tanC}\)
=\(\frac{tanA + tanB + tanC - tanA tanB tanC}{1 - tanB tanC - tanC tanA - tanA tanB}\)
Lesson
Trigonometry
Subject
Optional Mathematics
Grade
Grade 10
Recent Notes
No recent notes.
Related Notes
No related notes.