Transformation of Trigonometric Formulae
Transformation formulae | Key to remember |
2sinA cosB = sin(A + B) + sin(A - B) | 2 sin. cos = sin + sin |
2 cosA sinB = sin(A + B) - sin(A - B) | 2 cos. sin = sin - sin |
2 cosA cosB = cos(A + B) + cos(A - B) | 2 cos. cos = cos + cos |
2 sinnA sinB = cos (A - B) - cos(A + B) |
2 sin. sin = cos - cos |
sinC + sinD = 2sin(\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | sin + sin = 2sin. cos |
sinC - sinD = 2 cos (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | sin - sin = 2cos. sin |
cosC + cosD = 2 cos (\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | cos + cos = 2cos. cos |
cosC - cosD = -2 sin (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | cos - cos = 2sin. sin |
Summary
Transformation formulae | Key to remember |
2sinA cosB = sin(A + B) + sin(A - B) | 2 sin. cos = sin + sin |
2 cosA sinB = sin(A + B) - sin(A - B) | 2 cos. sin = sin - sin |
2 cosA cosB = cos(A + B) + cos(A - B) | 2 cos. cos = cos + cos |
2 sinnA sinB = cos (A - B) - cos(A + B) |
2 sin. sin = cos - cos |
sinC + sinD = 2sin(\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | sin + sin = 2sin. cos |
sinC - sinD = 2 cos (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | sin - sin = 2cos. sin |
cosC + cosD = 2 cos (\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | cos + cos = 2cos. cos |
cosC - cosD = -2 sin (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | cos - cos = 2sin. sin |
Things to Remember
Transformation formulae | Key to remember |
2sinA cosB = sin(A + B) + sin(A - B) | 2 sin. cos = sin + sin |
2 cosA sinB = sin(A + B) - sin(A - B) | 2 cos. sin = sin - sin |
2 cosA cosB = cos(A + B) + cos(A - B) | 2 cos. cos = cos + cos |
2 sinnA sinB = cos (A - B) - cos(A + B) | 2 sin. sin = cos - cos |
sinC + sinD = 2sin(\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | sin + sin = 2sin. cos |
sinC - sinD = 2 cos (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | sin - sin = 2cos. sin |
cosC + cosD = 2 cos (\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | cos + cos = 2cos. cos |
cosC - cosD = -2 sin (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | cos - cos = 2sin. sin |
MCQs
No MCQs found.
Subjective Questions
No subjective questions found.
Videos
No videos found.

Transformation of Trigonometric Formulae
We can transform the product of the trigonometric ratios of the angles into the sum or the difference of the trigonometric ratios of the compound angles and vice versa.
Transformation of products into sum or difference
(a) We know that,
sinA. cosB + cosA sinB = sin(A + B) .................(i)
sinA cosB - cosA sinB = sin(A - B) ...................(ii)
Adding (i) and (ii), we get
2sinA cosB = sin(A + B) + sin(A - B)
Subtracting (ii) from (i) we get.
2cosA sinB = sin(A + B) - sin(A - B)
(b) Again we know that,
cosA cosB - sinA sinB = cos(A + B) .............(iii)
cosA cosB + sinA sinB = cos(A - B) ..............(iv)
Adding (iii) and (iv) we get
2cosA cosB = cos(A + B) + cos(A - B)
Subtracting (iii) from (iv) we get
2sinA sinB = cos(A - B) - cos(A + B)
Now, the following formulae transform the product of the trigonometric ratios of the angles into the sum or the difference of the trigonometric ratios of the compound angles:
2 sinA cosB = sin(A + B) - sin(A - B)
2 cosA sinB = sin(A + B) - sin(A - B)
2 cosA cosB = sin(A + B) = cos(A - B)
2 sinA sinB = cos(A - B) - cos(A + B)
It will be convenient to remmember the above formulae in the form
2 sin cos = sin + sin
2 sin cos = sin - sin
2 cos cos = cos + cos
2 sin sin = cos - cos
Transformation of sum or difference into product
From the above formula, we have
sin(A + B) + sin(A - B) = 2 sinA cosB ...........(i)
sin(A + B) - sin(A - B) = 2 cosA sinB ........... (ii)
cos(A + B) + cos (A - B) = 2 cosA cosB ...............(iii)
cos(A - B) - cos(A + B) = 2 sinA sinB ..............(iv)
Suppose A + B = C and A - B = D
Adding the two we get, 2A = C + D
or, A =\(\frac{C + D}{2}\)
Again subtracting second from first, we get 2B = C - D
or, B =\(\frac{C - D}{2}\)
Now, substituting the values of A, B, A + B and A - B in (i), (ii), (iii) and (iv), we have
sinC + sinD = 2 sin (\()\frac{C + D}{2}\) cos (\(\frac{C - D}{2}\))
sinC - sinD = 2 cos (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\))
cosC + cosD = 2 cos (\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\))
cosD - cosC = 2 sin (\(\frac{C + D}{2}\)) sin (\(\frac{D - C}{2}\))
cosC - cosD = -2 sin (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\))
These formulae transform the sum or difference of trigonometric ratios into the products of trigonometric ratios.
It will be convenient to remember the above formulae in the form
sin + sin = 2 sin. cos
sin - sin = 2 cos. sin
cos + cos = 2 cos. sin
cos - cos = 2 sin. sin
Transformation formulae | Key to remember |
2sinA cosB = sin(A + B) + sin(A - B) | 2 sin. cos = sin + sin |
2 cosA sinB = sin(A + B) - sin(A - B) | 2 cos. sin = sin - sin |
2 cosA cosB = cos(A + B) + cos(A - B) | 2 cos. cos = cos + cos |
2 sinnA sinB = cos (A - B) - cos(A + B) | 2 sin. sin = cos - cos |
sinC + sinD = 2sin(\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | sin + sin = 2sin. cos |
sinC - sinD = 2 cos (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | sin - sin = 2cos. sin |
cosC + cosD = 2 cos (\(\frac{C + D}{2}\)) cos (\(\frac{C - D}{2}\)) | cos + cos = 2cos. cos |
cosC - cosD = -2 sin (\(\frac{C + D}{2}\)) sin (\(\frac{C - D}{2}\)) | cos - cos = 2sin. sin |
Lesson
Trigonometry
Subject
Optional Mathematics
Grade
Grade 10
Recent Notes
No recent notes.
Related Notes
No related notes.